Teresa Molina Millán
Nova School of Business and Economics
Karen Macours
Paris School of Economics and INRA
ISSN 2183-0843
Working Paper No 1702
April 2017
Abstract
This paper starts from a review of RCT studies in development economics, and documents many studies largely ignore attrition once attrition rates are found balanced between treatment arms. The paper analyzes the implications of attrition for the internal and external validity of the results of a randomized experiment with balanced attrition rates, and proposes a new method to correct for attrition bias. We rely on a 10-years longitudinal data set with a nal attrition rate of 10 percent, obtained after intensive tracking of migrants, and document the sensitivity of ITT estimates for schooling gains and labour market outcomes for a social program in Nicaragua. We nd that not including those found during the intensive tracking leads to an overestimate of the ITT effects for the target population by more than
35 percent, and that selection into attrition is driven by observable baseline characteristics. We propose to correct for attrition using inverse probability weighting with estimates of weights that exploit the similarities between missing individuals and those found during an intensive tracking phase. We compare these estimates with alternative strategies using regression adjustment, standard weights, bounds or proxy information.