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The Effect of Nature’s Wealth on Economic Development:

Evidence from Renewable Resources*

Alex Armand Iván Kim Taveras

Abstract

We study the causal effect of short-run variations in nature’s wealth on human and economic

development. We focus on the ocean as a naturally occurring source of food and study early-life

exposure to exogenous variation in the wealth of marine life near human settlements. Analyzing

data on 36 low- and middle-income countries between 1972 and 2018, we estimate impacts by

analyzing 0.5 million adult women and 1.5 million births. Negative shocks have a significant ef-

fect on mortality early in life, and long-lasting negative impacts on human capital and economic

well-being. These effects operate through mild nutritional deprivation, in absence of contempo-

raneous changes in individual behavior and aggregate income. Both short- and long-run effects

are amplified by overexploitation of marine resources, highlighting the role of nature’s wealth

in insuring against short-run shocks. Aggregate estimates reveal that persistent negative shocks

lead to considerable life loss in the long run. (JEL I15, Q20, Q54, O10)

Keywords: Child; Climate Change; Economic development; Health; Mortality; Natural re-

source; Ocean; Renewable resource.
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The availability of abundant wildlife was a catalyzer of early development and remains

a factor of economic success (Barrett et al., 2011; Dalgaard et al., 2020). It is un-

clear whether its effect results from the exogenous presence of large amounts of these

renewable natural resources, i.e., nature’s wealth, or from the ability of countries to sus-

tainably use them as a source of food, energy or inputs of production. A large body of

literature, at least since Malthus (1872), has focused on the latter, highlighting the deter-

minants of overexploitation but ignoring the contribution of nature. This is the case of

well-known issues like deforestation (Burgess et al., 2012; Jayachandran, 2013), over-

fishing (Stavins, 2011; Huang and Smith, 2014; Noussair et al., 2015), and poaching

(Kremer and Morcom, 2000).1

We disentangle both channels by studying the consequences for economic development

of short-run variations in nature’s wealth. We provide evidence of causal effects on

mortality, human capital, and economic well-being by focusing on the ocean as a nat-

urally occurring source of food. To this day, fish continues to provide nutrients that

are both accessible in nature and essential for human health, in particular for maternal

and child health (United Nations, 2021; Victora et al., 2021).2 Worldwide more than

3 billion people, who mostly reside in low- and middle-income countries (L&MICs),

depend on the consumption of fish for their survival (FAO, 2020b).3

We quantify causal effects by studying early-in-life exposure to natural resource wealth

in the ocean. We proxy this wealth at the local level using variation in the ocean’s

acidity or basicity of its waters, as measured by pH. At lower levels of pH (indicating

acidity), the availability of minerals needed by marine life to develop is reduced, and the

nutritional content of commonly-harvested species is negatively impacted (Maire et al.,

1Models of wildlife preservation were introduced by Smith (1969); Clark (1973). Relatedly, a large
literature studies nature as one of the inputs to agriculture (Auffhammer, 2018).

2Fish is a primary source of proteins and of several micronutrients that are crucial for maternal health
and child development (FAO, 2020a): iron and iodine support brain development and help prevent still-
birth; zinc and vitamin A support childhood survival and promote growth; calcium and vitamin D prevent
preterm delivery; vitamin B12 contributes to a healthy nervous system and brain development; and es-
sential fatty acids prevent preeclampsia, preterm delivery, and low birth weight.

3Twenty-six percent of all animal protein that is consumed in L&MICs is derived from fish, with
peaks of 50% or more in countries like Bangladesh, Cambodia, the Gambia, Ghana, Indonesia, Sierra
Leone, and Sri Lanka. The global average is 17% (FAO, 2020b). In L&MICs, fish is also an important
contributor of micronutrient intake (Hicks et al., 2019).
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2021).4 We exploit the natural cycle of this chemical property: in a given area, pH

varies in the short run as random draws from the long-run distribution, which climate

change has altered with spatially-heterogeneous increases in acidity, a process known

as ocean acidification. Therefore, in the short run, the ocean’s water near a specific

coastal community can be relatively more (or less) acidic than its normal level, resulting

in reduced (or increased) mineral availability for marine life. This plausibly random

short-run variation, which we exploit for identification, is similar to that of rainfall or

temperature, which have been widely used in the literature (see, e.g., Corno et al., 2020).

This phenomenon is novel in the economic literature and cannot be read under the

lens of available knowledge about early-in-life shocks (see, e.g., Almond et al., 2018).

Shocks to ocean’s resources are not only understudied in the literature (Colt and Knapp,

2016), but due to the rivalrous and non-excludable essence of marine resources, they

are also not comparable to the well-known effects of shocks to agricultural or subsoil

extractive activities (Collier, 2010; Van der Ploeg, 2011). In addition, they present

features that are unique in the literature: the ocean’s pH is not directly observed or

felt by individuals, it has no direct effect on health, and public awareness about its

changing nature is highly limited (Gelcich et al., 2014).5 Because short-run shocks to

open-access resources have small impacts on income and prices (Kroodsma et al., 2018;

Bianchi et al., 2021), a finding that we confirm in the paper, the most plausible channel

of the effect is the consumption of fish.

Focusing on L&MICs, we study both short- and long-run effects using a unique histor-

ical and geographical coverage: for the period 1972–2018, we analyze half a million

adult women and 1.5 million live births in 36 countries across Africa, Asia, and Latin

America. We compute early-in-life exposure to resource wealth by matching each in-

dividual’s geolocation and date of birth with data on water’s pH at a high spatial and

4Water acidity limits the ability of fish to calcify bones during development and raises their metabolic
cost of life (Doney et al., 2020). We discuss the effect of variables that have direct effect on fish survival,
and thus fish stocks, in Appendix B.2.

5The literature covers a wide variety of events that are either observable (directly or indirectly through
market mediators) or have direct effects on health, such as atmospheric events (Heft-Neal et al., 2018;
Geruso and Spears, 2018a; Adhvaryu et al., 2020), conflict (Wagner et al., 2018), macroeconomic fluctu-
ations (Baird et al., 2011; Paxson and Schady, 2005; Bhalotra, 2010), political institutions (Kudamatsu,
2012), environmental contamination (Chay and Greenstone, 2003; Arceo et al., 2016; Isen et al., 2017;
Geruso and Spears, 2018b), and radioactive exposure (Black et al., 2019).
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temporal resolution. For identification, we define shocks to resource wealth as short-run

deviations in pH levels from the spatially-specific (and seasonally-adjusted) long-run

trend, an approach that makes relatively few identifying assumptions and allows unusu-

ally strong causative interpretation (Dell et al., 2014). Deviations are obtained by cap-

turing residual unobserved heterogeneity in the estimating equation using a multi-way

fixed effects (FEs) model. Identifying assumptions are supported by several checks.

We show that resource wealth has a significant effect on mortality early in life. This

effect is specific to larger deviations in acidity (negative shocks) experienced in utero,

highlighting the role played by natural resource scarcity, rather than abundance, and

by maternal health. A negative one standard deviation shock raises neonatal mortality

–the probability of dying during the first month of life– by approximately 0.5 deaths per

1,000 live births in communities located near the ocean’s shore. The effect gradually

converges to zero by the first year of life.

Beyond the effect on mortality, resource wealth has important consequences for human

capital accumulation. Anthropometric measurements show that, on average, mortal-

ity is more prevalent among the weakest children because those who are alive past the

first month, on average, have slightly better health. However, among female children,

we observe a scarring effect, with a significant increase in stunting. The magnitude

of the effect is small, and plausibly not directly observable by parents. However, neg-

ative consequences persist among adult women, whose economic well-being is also

adversely affected.

We document how a negative shock operates through mild nutritional deprivation. First,

we exclude changes in income. We observe no effect on satellite-based nightlight lumi-

nosity, a proxy for economic productivity and human development (Henderson et al.,

2012; Bruederle and Hodler, 2018). For negative shocks to agriculture, we observe

a significant reduction in luminosity that operates independently from shocks in the

ocean, reinforcing the difference between the two channels. Main estimates are also

unaffected by including controls capturing income processes in coastal areas at the time

in which resource wealth is measured.
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Second, we exclude behavioral changes contemporaneous to the shock, which further

confirms its mild nature. Parental investments on child health are unaffected, while the

effect on early-life mortality is homogeneous by wealth and education of the household.

Results also exclude important correlates of neonatal death, such as differential access

to medical care and nutrient supplementation (Black et al., 2013), behavioral changes

that can occur after observing a child’s health, and maternal stress, which has been

found to play a role in more traumatic events (Berthelon et al., 2021).6

Third, we provide evidence against adjustments in consumption and nutrition patterns.

Focusing on the Philippines, one of the most fish-dependent country in the world, we

show that short-run shocks in local fish prices contribute to mortality. However, re-

source wealth operates independently, reinforcing the finding that maternal nutrition is

affected only in a mild way. This is in line with the medical literature highlighting that

fetal growth restrictions–the main cause of neonatal deaths and an important determi-

nant of future child development–are closely associated with micronutrient deficiencies

(Black et al., 2013), hard to observe without adequate access to health services. The

largest impacts are in fact recorded where fish is an essential source of nutrients, while

consumption patterns in a larger sample of countries at the time of the interview show

no effect on the probability to consume fish or proteins from other sources.

We reconcile our findings with the literature on natural resource exploitation and high-

light how overexploitation amplifies the effects of short-run negative shocks. We build

two geographically granular measures for the intensity of fishing: one capturing an ex-

tractive form of fishing, which depletes fish stocks without generating economic bene-

fits for local communities in the form of consumption or income; and an arguably more

inclusive form of fishing, which does not necessarily imply overexploitation and can

potentially redistribute benefits among local populations. Short- and long-run effects of

negative shocks are amplified only in areas with higher intensity of extractive fishing.

On the contrary, in areas with higher intensity of inclusive forms of fishing, negative

shocks are compensated. This finding emphasizes how human-driven overexploitation

6Absence of parental adaptation is contrary to available evidence on observable deprivation, for ex-
ample, during famines and fasting (Razzaque et al., 1990; Almond and Mazumder, 2011; Majid, 2015),
or after the supplementation of nutrients (Adhvaryu and Nyshadham, 2016).
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acts as a limiting force to nature’s ability to act as insurance against short-run shocks.

These results provide novel evidence on the role of natural resources for human de-

velopment, further contributing to the nascent literature on the relationship between

biodiversity and poverty. While a large literature studies non-renewable resources, evi-

dence on the exploitation of renewable natural assets remains limited (Dasgupta, 2021).

As the ocean’s chemical composition is impacted by climate change, providing novel

results on the relationship between renewable resources and human development also

deepens our understanding of the potential effects of climate change on household be-

havior. In line with evidence on the sizable effects of varying temperature and rainfall

(Barreca et al., 2016; Burke and Emerick, 2016), our counterfactual analysis shows

that, in the absence of adaptation, short-run shocks can translate into large long-run

aggregate effects of ocean acidification.

Finally, we provide new evidence on the roots of development in settings of relative

deprivation. Short-run negative shocks at the time of gestation can explain future dif-

ferences in mortality rates, development, and long-term economic outcomes that are in

part due to chance, as parents do not compensate for unobserved or mild shocks. These

results are particularly important in light of the centrality of parental investments for

early childhood development (Attanasio et al., 2020).

1 Data

We collate a wide variety of data sources that we describe in this section. Appendix A.1

provides further details of the variables used and data sources.

Mortality, human capital and adaptative behavior. We collate and homogenize 95

household surveys from 36 countries collected by the Demographic and Health Surveys

(DHS) Program between 1990–2018. Individual surveys provide nationally representa-

tive data on health and population in L&MICs, with a particular focus on maternal and

child health, and have been widely used to build mortality rates among children thanks

to its detailed and accurate birth histories. The dataset is supplemented with objective
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measurements of child development and nutrition, such as height and weight. The pro-

gram surveys women aged 15–49 and includes information about their demographics,

including wealth and human capital accumulation. Each surveyed woman’s birth his-

tory is recorded and includes information on the children’s year and month of birth, sex,

birth order, whether they are twins, and the date of death when it applies.7

The primary sampling unit is a cluster, which represents the community (a village or

a neighborhood). Our dataset includes all available surveys with geocoordinates and

only considers countries with direct access to the ocean. Appendix A.1 provides the

full list of countries and surveys included in the study. We use all available surveys and

re-weight observations to correct for oversampling of countries with multiple surveys.8

Geolocation of communities allows for restricting the sample to households living in

coastal areas; by definition, these are the ones with the highest dependence on the

ocean. Following the United Nations (2003), a coastal area is defined as the buffer

extending landward from the ocean’s shore up to a distance of 100 km. Distances from

the shore are computed as the minimum straight distance from the community to the

shoreline (see Appendix A.2 for details about the procedure). Figure 1 shows the geo-

graphical coverage of the study area, and Table 1 presents descriptive statistics for the

sample. While individual characteristics tend to be comparable in magnitude between

communities in the coastal and inland areas, households in proximity with the ocean

are slightly richer and present lower mortality rates (Appendix Table A4). Appendix

B.1 discusses alternative approaches to the definition of coastal area.

Resource wealth. We proxy resource wealth by focusing on variation in the natural

habitat of marine life, measured by the ocean’s chemical composition. We focus on

water pH at the surface, i.e., a logarithmic scale indicating the acidity or basicity of

an aqueous solution. Lower values indicate higher acidity. For seawater, pH typically

ranges between 7.5 and 8.4. Chemical features of the ocean in open waters are obtained

from the Hadley Global Environment Model 2 - Earth System provided by the Euro-

7While stillbirths are not recorded, we assume measurement error is minimal because the death of a
child is a tragic event. Appendix B.7 shows evidence against recall bias.

8Results are robust to different selection criteria (Appendix Table A3). For questions that are omitted
in certain survey rounds, we re-compute the weight to account for this selection.
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pean Space Agency (ESA) Pathfinders-OA project (Sabia et al., 2015).9 The produced

series from the model matches available information from observational data (Totter-

dell, 2019).10 Data are provided as monthly global raster data at the 1°×1° resolution

for the period 1972–2018. We match this information with DHS data using a proximity

criteria: each community is matched with a data point in the ocean using the shortest

straight-line distance.

We supplement data with other variables that could affect resource wealth in the ocean

and inland in the coastal area. First, using the HadGEM2-ES model, we gather informa-

tion about other chemical features of the ocean at the same resolution used to measure

of pH. Second, using the ERA5 database, we supplement data with other meteorologi-

cal features in the same ocean’s location where pH is measured, including temperature

and wind speed. Third, to control for weather characteristics inland, we include yearly

rainfall and temperature data at the community level from the PRIO-GRID database.

Appendix B.2 provides descriptive statistics for these variables.

Ocean’s exploitation. We use geographically-granular data about the intensity and the

type of natural resource exploitation. First, we consider a form of extractive fishing by

focusing on industrial fishing. In L&MICs, this practice is largely responsible for the

greater biodiversity declines in these areas, but with limited economic benefits for local

communities as a positive trade balance for seafood correlates with undernourishment

(Golden et al., 2016; Sala et al., 2021). We measure it using the Global Fishing Watch

dataset, which provides data on the hours industrial fishing vessels spend at specific ge-

olocations. Because data are available only for the period 2012–2016, we build a global

grid at the 1°×1° resolution summing fishing hours within each cell over the avail-

able period. Because industrial fishing patterns have low sensitivity to economic and

environmental variation and are highly stable over time (Kroodsma et al., 2018), time-

invariant heterogeneity is likely capturing suitability for industrial fishing, rather than

9Chemical features are measured in open waters rather than coastal waters to avoid the confounding
effects of pollution. Excluding areas near estuaries–the main source of pollution for the ocean–has no
effect on estimates (Appendix B.1).

10Any measurement error is uncorrelated with unobservable determinants of local development be-
cause the model is exclusively determined on climatology. For the use of re-analysis climatology datasets
in economics, refer to Dell et al. (2014).
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short-run responses to changes in the ocean’s health. Dependency on fish for nutrition

is also highly stable over time (Appendix B.3).

Second, we also measure fishing activities characterized by a lower degree of extractive

exploitation. We focus on night-time fishing using the Automatic Boat Identification

System for VIIRS Low Light Imaging Data (Elvidge et al., 2015), which provides the

time and geolocation of boats detected using nightlight measured from satellite imaging.

Because only 16% of fishing detected with this algorithm is also captured by industrial

fishing (Kroodsma et al., 2018), night-time fishing tends to capture boats operating on a

smaller and on a local scale, thus potentially contributing to the local economy. Similar

to the measure of extractive fishing, we build a global grid at the 1°×1° resolution with

the sum of all detected boats for the period in which data are available (2017–2019).

We normalize intensity from both activities to be between 0 (no presence) and 1 (high

intensity). Appendix Figure B14 shows an example of the geographical distribution.

Aggregate income. We complement data with the average night-time light emission

from the calibrated DMSP-OLS Night-time Lights Time Series 4. Yearly data are avail-

able for the period 1992–2012. We normalize luminosity by population in the grid cell

using the PRIO-GRID database, performing the analysis using nightlight luminosity

per 100,000 inhabitants in a gridded dataset at the 0.5°×0.5° resolution, selecting only

grid cells where DHS clusters used in the main analysis are present.

2 Empirical strategy

The ocean’s chemical composition varies over time and space in a similar fashion to

weather systems (Feely et al., 2008). Globally and locally, it is affected by winds, tem-

perature, sea ice, precipitation, runoff, and ocean circulation. Similar to other chemical

properties of the ocean, water’s pH presents a short-term component, that we exploit

for causal identification. The short-term component is randomly drawn from the long-

run distribution, which has been altered by climate change as the ocean’s absorption

of anthropogenic CO2 has led to an increase in the global average of water acidity by

26% since the Industrial Revolution (Doney et al., 2020). Because acidification is deter-
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mined at a global scale, but with spatially-heterogeneous effects, it introduces further

exogenous variation in short-run shocks: some regions exhibit steeper trends and/or

more amplified within-year variation than others.

In our sample, variation in pH originates from both the time and geographic dimen-

sions with comparable contributions of its between and within components (Appendix

B.4). Summary statistics for matched raster points confirms its similarity with weather

systems: short-run variation in pH occurs around a global trend with within-year sea-

sonality, just like air temperature or rainfall (Appendix B.2). The peak in average pH is

reached in January (8.10) and the minimum is around September (8.09), with a median

within-year variation of 0.01 units of pH. Average in-utero exposure to pH decreased

from 8.08 to 8.02 in the considered time frame.

For identification, we follow a standard approach in the literature on the effects of

weather shocks (see, e.g., Dell et al., 2014), and define a shock as the short-run deviation

in water pH levels from the spatially-specific long run trend (corrected for seasonality)

at the location of birth. We denote as Rvc,mt the open water’s pH of the ocean in the

nearest point from the community v of macro-region c measured in the month m of

year t. We multiply Rvc,mt by 100 to relate coefficients to an increase of 0.01 units in

pH (approximately three standard deviations in the main identifying sample). Individ-

ual exposure is computed by matching individual information about children and adult

women withRvc,mt using their date and location of birth.11 When exposure is computed

over multiple months, we average pH over that period. For instance, exposure in utero

is the average Rvc,mt during the 9 months preceding the date of birth.

This approach relies on the inclusion of a set of fixed effects (FEs) in the estimating

equation. First, we remove spatially-specific trends and seasonality in both the ocean’s

chemical composition and in outcome variables by including macro-region by birth

month FEs, µc,m. Second, we remove spatially-specific trends by including community

FEs, θvc, which capture time-invariant (observed or unobserved) spatial characteristics,

and macro-region by birth year FEs, φc,t, which captures unobserved variation in trends

11We assume that the location of surveying correspond to the location of birth. We do not highlight
potential issues associated with selective migration (Appendix B.7).
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among areas affected by faster or slower rates of acidification. Finally, time FEs, ηmt,

remove unobserved characteristics of the date of birth by controlling for year by month

of birth indicators. Appendix Figure B4 shows the evolution of the average shock in

the sample over time, reinforcing the nature of abnormal deviation in pH of our main

independent variable.

For children and adult women’s outcomes, the causal effect of a shock in resource

wealth, β, is therefore estimated in deviations using the following specification:

yikvc,mt = β Rvc,mt + Xikvc,mtγ + Ωvc,mt + εikvc,mt (1)

where yikvym is the outcome of interest for individual i born from mother k in month m

of year t in community v of macro-region c, Xikvc,mt is a vector of control variables, and

εikvc,mt are idiosyncratic errors assumed to be clustered at the ocean raster data point.12

For FEs Ωvc,mt, we consider two main alternatives: in the benchmark specification,

the set of FEs is defined by Ωvc,mt = ηmt + θvc + φc,t + µc,m, while in the within-

sibling specification, we replace community FEs with mother-specific FEs, τk. The

latter strategy restricts the analysis to siblings and allows controlling for mothers and

households’ time-invariant characteristics.

We support the validity of the identifying assumption with a variety of tests. First, we

check the exogeneity of the resource shock to observed heterogeneity by estimating

equation (1) without controls and with mothers and communities’ observable charac-

teristics as dependent variables. Balance on observables is confirmed as characteristics

are not statistically different in areas with different shocks (Appendix B.5).

Second, we present estimates using alternative identifying assumptions, varying the set

of FEs in equation (1), thus altering the definition of a shock. We control for alter-

12Including control variables has limited impact on the main estimates (Figure 2). When included
in child-level regressions, demographic controls include the child’s gender and birth order, the number
of twins born with the child, mother’s age at birth (including a square term), mother’s age at the time
of the interview (including a square term), mother’s years of education, the household head’s gender
and age, and household size. For adult-level regressions, controls are limited to mother and household
head’s characteristics. Weather controls include the community’s average temperature and rainfall (and
their interaction) in the year of birth, and another chemical feature of the ocean that relates with ocean
temperature, oxygen concentration (Appendix B.2 provides further details about this control variable).
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native sets of control variables, including the exclusion of Xikvc,mt, and for different

time FEs, including year and month indicators separately. Further, we vary the defi-

nition of macro-regions, considering administrative indicators, such as the country or

the district of the community, which is a standard approach in the literature, and global

grids at different resolutions, which dissuade concerns about the potential endogeneity

of administrative bounds. In the latter, the macro-region is defined by the grid cell that

contains the community v. To guarantee sufficient variation in ocean’s pH, we use as

main reference a global grid with a latitude–longitude resolution of 5°×5° per grid cell.

Third, we address issues related to non-random selection driven by FEs. In our setting,

this can occur from the loss of groups with only one observation and can lead esti-

mates to differ from the population-wise average effect if impacts are heterogeneous

(Cameron et al., 2011). For example, the within-sibling identifying assumptions re-

quire restricting the sample to mothers with at least two live births, who are generally

older, have fewer years of education, were younger at the time of their first birth, and

live in poorer households and communities (Appendix B.4). Threats from this form of

selection are limited by a shock being not only continuous, but also presenting a high

degree of variation (the within-community variance in the identifying sample used by

the benchmark specification is always positive). Nevertheless, in all results tables, we

report the number of observations used in the estimation (identifying observations), and

the number of observations that are dropped due to the identifying restrictions (single-

ton observations). In addition, Appendix B.4 provides estimates using the Miller et al.

(2021) re-weighting procedure, and estimating the benchmark specification with the

within-sibling identifying sample (see, e.g., Alesina et al., 2021).

Finally, we present results using alternative assumptions related to statistical infer-

ence. We show robustness to alternative assumptions about standard errors, and to

permutation-based inference by artificially varying the shock (Appendix B.6).
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3 Results

3.1 Mortality and human capital accumulation

We begin by focusing on the effect of a resource wealth on neonatal mortality. Table

2 presents estimates of the effect on the Neonatal Mortality Rate (NMR)–the number

of deaths in the first month of life per 1,000 live births. To isolate a channel operating

through maternal health, we begin by studying exposure to resource wealth while in

utero. Panel A uses the benchmark specification, while Panel B uses the within-sibling

specification. Columns (1)–(3) remove seasonality at the country level, while columns

(3)–(6) remove seasonality at the grid cell level. Columns (1) and (4) do not include

any control variables, columns (2) and (5) add weather controls, and columns (3) and

(6) further add demographic controls.

Shocks experienced in utero have a substantial impact. A 0.01 decrease in pH sig-

nificantly increases NMR by 1.42–2.12 deaths per 1,000 live births in our benchmark

specification (Panel A). Estimates using the within-sibling specification are not dissimi-

lar (Panel B of Table 2), suggesting that family-specific unobserved heterogeneity is not

driving identification. In terms of standardized effects, a one-standard-deviation nega-

tive shock leads to an increase in NMR by 0.53–0.60 deaths per 1,000 live births in the

benchmark specification and 0.53-0.67 deaths per 1,000 live births in the within-sibling

specification (Appendix Table B2). Adding control variables has a limited effect on

the estimates of the effect, providing further evidence in support of the exogeneity of a

shock. Significant effects are also found when varying the definition of coastal area.13

Results are robust to a wide variety of checks. First, the effect on neonatal mortality is

robust to alternative specifications (Figure 2). While we expect some degree of varia-

tion in the estimates, because changing the set of FEs alters our identifying assumptions

and our measure of shock, we highlight a high stability of the estimates. At standard

confidence levels, estimates are always negative and significantly different from zero.14

13The most affected communities live within 40 km from the shore. Restricting coastal areas to alti-
tudes below 100 meters or excluding estuaries have limited effect on estimates (Appendix B.1). Estimates
are also robust to potential sources of measurement error associated with distances (Appendix B.5).

14Results are also robust to including interactions between the birth year and the birth month of the
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Second, results are not driven by selection into identification. Estimating the effect

using the reweighting procedure proposed by Miller et al. (2021) and the benchmark

specification restricting the sample to the within-sibling identifying sample highlight

similar estimates and conclusions. Third, statistical inference is robust to alternative

assumptions about standard errors in equation (1) and to permutation-based inference,

which artificially varies the exposure in both space and time to the shock. For all spec-

ifications in Table 2 and all tests, using permutation-based inference we reject the null

hypothesis of a nil effect at a 5% significance level for all estimates (Appendix B.6).

Figure 3 shows that the effect of resource wealth is specific to negative shocks experi-

enced while in utero. Similar to Deschênes and Greenstone (2011), we implement an

analysis based of binned variation of pH rather than continuous. Panel A shows esti-

mates of equation (1) replacing the ocean’s pH while in utero with the share of time

children were exposed to values of the ocean’s pH within a specific range during their

gestation period. After controlling for the set of fixed effects, the effect on neonatal

mortality is driven by exposure to lower levels of pH. This suggests that the effect is

driven by scarcity shocks rather than abundance shocks, in line with the process of

ocean acidification. To understand whether exposure of shocks in periods in proxim-

ity to gestation can also explain mortality, Panel B shows estimates of equation (1) by

adding exposure one month before conception (10 months before birth), the month of

birth, and 1–4 months after birth (a placebo period because it is posterior to the period

considered for the death). Impacts are driven by the specific exposure to shocks during

the gestation, reinforcing the role of maternal health during pregnancy and excluding

channels operating through direct effects on children.

We then look at how resource wealth experienced in utero impacts mortality up to age

5. We focus on the probability of death at the monthly level to avoid potential issues

related to the heaping of self-reported date of death.15 We estimate the probability of

child with the time-invariant average across the study period of the following variables: intensity of
extractive and night-time fishing; the gross cell product, the population living in the cell, and the average
nightlight luminosity. Results available upon request.

15 The heaping of deaths at 1 year is common, while mortality rates at ages 2, 3, 4 and 5 are hardly
affected by heaping (Croft et al., 2018). In Figure 4, we indicate these points by vertical lines. We do not
observe any effect on the estimates due to these potential issues. For comparison, Appendix B.8 presents
estimates of the effect on mortality rates at standard times.
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death at age x (in months) using equation (1) and restricting the sample to children

who, at the time of the interview, are born at least x months before (independently

from being alive). We select the sample based on time from birth, rather than age, to

avoid selecting children alive and younger than x. We repeat the same specification

for x ranging from 1 month to 60 months. The dependent variable, updated in every

iteration, is an indicator variable equal to one if the child is not alive at time x from

birth, and 0 otherwise, and is multiplied by 1,000 to relate coefficients to changes in

deaths per 1,000 live births. Figure 4 plots the coefficients.

The effect peaks in the first month of life, which corresponds to the effect on neonatal

mortality, and remains significant for the very first months of life. A smaller net effect

is observed beyond the first month of life, with convergence to zero within the first year

of life. Because, short-run effects slowly disappear as the initial increase in mortality is

offset by later decreases, the pattern is consistent with a displacement of mortality that

is hastened by experiencing worse conditions.16

Turning to human capital accumulation, Table 3 shows the effects of resource wealth

experienced in utero on physical development built upon anthropometry, whose rela-

tion with long-term human capital accumulation is well established in the literature

(McGovern et al., 2017). Panels A and B focus on short-run effects by analyzing mea-

surements for children, while Panel C presents long-run effects among adult women.

In column (1), we define physical development as the average z-score of available an-

thropometric measures. We include weight-for-height (w/h), which captures insuffi-

cient food intake or a high incidence of infectious diseases in temporal proximity with

the measurement, and height-for-age (h/a), which captures past or cumulative effects of

under-nutrition and infectious diseases since conception.17 Estimates of the effect on

these individual indicators are reported in columns (2)–(3). Estimates in columns (4)–

(5) focus instead on indicator variables for abnormally low values of weight-for-height

(wasting), and of height-for-age (stunting). All measures rely on objective measure-

16This mechanism is known in the literature as death harvesting. For weather-related shocks, evidence
is mixed (Deschênes and Moretti, 2009; Heutel et al., 2017; Geruso and Spears, 2018a).

17For adults older than 18 years old, z-scores refer to standard reference curves at age 18, when phys-
ical development is assumed to be complete.
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ments performed by the enumerators on a random subset of children and adults. These

measures are conditional on the individual being alive at the moment of the interview,

and therefore need to be interpreted in light of the results on mortality.

Panel A in Table 3 highlights that a negative shock induces mortality selection among

children. Living children that experienced a negative shock tend to have slightly bet-

ter indicators (Panel A). A 0.01 decrease in pH increases physical development by 1.8

percentage points, mainly driven by an increase in weight-for-height and a reduction in

wasting. Importantly, these differences in anthropometrics are not associated with con-

temporaneous nutrition.18 This findings highlights that the effect on neonatal mortality

is primarily affecting the weakest children, in line with the overall negative relationship

between mortality and anthropometrics for L&MICs (Deaton, 2007).

While mortality selection is the prevalent mechanisms among children, we observe that

this channel is driven primarily by male children. While male children experience only

a slightly larger and not statistically different mortality as compared to female children

(Appendix B.10), when looking at physical development among female children, we

highlight the prevalence of a scarring effect (Panel B). While we do not observe any

significant effect on variables associated with weight, we record a significant effect on

stunting. A 0.01 negative shock increases the probability of the child to be stunted

by 1.3 percentage points, corresponding to an impact of 5.7% relative to the sample

mean. Importantly, this effect is persistent in the long-run. In Panel C, we observe a

significant effect on physical development among adult women. A 0.01 negative shock

decreases significantly physical development by 0.9 percentage points, driven primarily

by increases in height-for-age and stunting. Adaptation at later ages could play a role as

the magnitude of the effect, corresponding to an impact of 2.3% relative to the sample

mean, is smaller among adults as compared to children.

Overall, the magnitude of the effects on physical development remains relatively small,

making it likely that these small differences would remain unobserved by parents. To

18A negative shock leads to a reduction in the probability of being underweight the first months of
life, indicating differences in birth weight (Appendix Figure B12). We do not observe any significant
effect on morbidity and on an objective measurement of micronutritional deficiency (i.e., anemia) among
children at the time of the interview (Appendix B.9).
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further understand how these effects translate into long-run impacts on the economic

well-being of women, Table 4 focuses on economic outcomes. In column (1), we proxy

economic well-being in adult life with a measure of wealth, computed as an asset-based

index and known to be capturing households’ longer-run economic well-being (Jean

et al., 2016). Columns (2)–(6) focus instead on correlates of well-being, such as fertility

(number of births), years of schooling, cognitive skills (determined by the ability to read

a sentence), and on labor supply. Columns (1) and (6) select only women that are either

a household head or their partner (labeled as main), while Columns (2)–(5) refer to the

full sample of women aged 15–49.

Resource wealth has long-run consequences that are not limited to anthropometrics.

We highlight a significant impact on economic well-being: a 0.01 decrease in pH ex-

perienced in utero decreases adulthood wealth by 1.6 percentage points, an effect that

corresponds to 0.5% relative to the sample mean. This impact is accompanied by sta-

tistically significant decreases in the number of births per woman and in the probability

to work in the sample of main women by 0.008 children and 1.6 percentage points, re-

spectively. We do not observe any effect on schooling and cognitive skills. In line with

the impacts on physical development, the effects on economic well-being are small in

magnitude, but statistically detectable even in the long-run.

3.2 Mechanisms

Section 3.1 provides evidence in favor of a mechanism centered around maternal health.

This section tests alternative mechanisms that could explain these results.

Income. The exploitation of the ocean is a central economic activity in L&MICs. Out

of the 120 million workers employed worldwide in the marine capture sector, 116 mil-

lion lives in L&MICs. Of these, more than 90% work in small-scale and artisanal

fisheries, whose capture is almost entirely absorbed by local consumption (The World

Bank, 2012). Dependency on the exploitation of fish can be identified purely out of

distance from water bodies (FAO, 2020b). Figure 5 shows estimates of the effect of

resource wealth on neonatal mortality allowing estimates to vary flexibly with distance

17



from the ocean’s shore (Panel A), and from other water bodies (Panel B).19 The largest

effect on neonatal mortality is observed at the shore, while the estimate converges to

zero as distance increases. On the contrary, the effect is homogeneous with respect to

distance from other water bodies. These results confirms that impacts are concentrated

in communities that rely more heavily on the ocean’s resources. Areas in high proximity

to the ocean, are also areas with higher population densities.

While these findings highlight the importance of marine resources, they do not exclude

whether a shock induces changes in aggregate income. To clarify this point, we first

look at satellite-based nightlight luminosity. The objective is to compare the effect on

luminosity of two negative shocks to natural resources’ wealth: one in ocean’s waters,

similar to the resource shock studied in Section 3, and one inland, which is known to

generate income shocks. For the latter, we focus on a shock to agricultural productivity

measured by the presence of a drought. In L&MICs, rainfall is an important determinant

of income due to the dependence of these economies on agriculture (Barrios et al.,

2010). Following Corno et al. (2020), we define drought using an indicator variable

taking value one when annual rainfall in the grid cell is below the 15th percentile of

the grid cell’s historical rainfall distribution. For comparability, we follow the same

approach to define the shock affecting the ocean’s resources and we define a negative

resource shock with an indicator variable taking value one when the yearly average pH

in the nearest open ocean’s raster point is below the 15th percentile of the grid cell’s

historical distribution.

Using a gridded dataset at the 0.5°×0.5° spatial resolution, we build yearly panel data

for the coastal area covered by DHS, matching data about nightlight luminosity and

resource shocks. In our sample, these shocks are comparable: the negative resource

shock in the ocean is affecting 14.6% of observations, as compared to 12.9% for the

drought. However, these shocks do not take place at the same time within the same grid

cell because their correlation coefficient is -0.05. For identification, we follow a similar
19Other water bodies include lakes, ponds in islands within lakes, and all rivers. Freshwater ecosystems

are also acidifying, but proximity to these is negatively correlated with proximity to the ocean’s shore.
Estimates are robust to excluding areas near estuaries (Appendix B1).
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approach to equation (1) and estimate the following specification:

nlightic,t = βcoastR
coast
i,t + βinlandR

inland
i,t + Xic,tγ + δi + ηc,t + εic,t (2)

where nlighti,ct is the nightlight luminosity in the grid cell i of macro-region c at time

t, Rcoast
i,t is the indicator variable for the presence of a drought, and Rinland

i,t is the indi-

cator variable for the present of a negative resource shock in the nearest open ocean’s

raster point. Xic,t is a vector of time-varying controls, δi are cell-specific time-invariant

unobservable characteristics, and ηc,t capture local trends. εic,t are idiosyncratic errors

assumed to be clustered at the grid cell.

Table 5 presents estimates under different sets of control variables. Not only estimates

of the effect of a negative shock in the ocean’s waters is very small, but they are also

never significantly different from zero. In addition, estimates of these effects are unaf-

fected by adding the indicator variable for droughts. On the contrary, in line with the

literature highlighting the economic consequences of rainfall shocks, droughts have a

significant negative effect on nightlight luminosity in coastal areas. The magnitude is

about ten times as large as a comparable shock in the ocean’s waters. While we cannot

exclude that climate change and ocean acidification influence aggregate income in the

long run, these results confirm that short-run variation in the ocean’s resource wealth

is different from income shocks associated with agriculture and do not to induce any

short-run change in income.

The absence of a change in income is supported by the results of estimating equation

(1) adding (potentially-endogenous) controls capturing income processes at the time in

which resource wealth is measured. We control for: the (potentially-endogenous) pres-

ence of human activity using a measure of pollution in coastal waters; the presence of

conflict in coastal areas, which have been shown to respond to fishing income (Axbard,

2016); and adverse weather events such as heat and storms that could negatively im-

pact income near the shore (Hsiang and Jina, 2014; Gröger and Zylberberg, 2016). The

inclusion of the these controls does not affect our main estimates (Appendix B.2).

Behavioral adaptation. While aggregate income is unaffected by resource wealth in
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the ocean, it is important to study individual behavior to understand not only whether

adaptation limits the magnitude of the effects, but also whether lack of adaptation con-

firms that shocks are mild. Columns (1)–(2) of Table 6 examine adaptation at the time

of the shock using birth-level information on parental health investments on antena-

tal investments (attendance to health visits during pregnancy and presence of health

professionals during these visits), and delivery investments (presence of health profes-

sionals during delivery and whether delivery was performed in a health center). Both

variables range from 0 (no investment) to 2 (high investment). Appendix B12 provides

evidence on the individual indicators composing these variables. Columns (3)–(5) fo-

cus on investments after birth: postnatal healthcare, the completion of the cycle of basic

vaccinations, and whether the child has ever been breastfed, an important determinant

of child development (Black et al., 2013).

For both antenatal and delivery investments, we do not observe any significant effect.

The effect is also homogeneous in the birth order and gender of the child, two predic-

tors of differential parental investments in the presence of adverse shocks (Baird et al.,

2011). Because antenatal care is also a strong predictor of nutrient supplementation

plans during pregnancy, we also exclude this channel. We do not observe any effect

on postnatal care, which indicates that, during periods of temporal proximity to birth,

parental adaptation following the observation of child health is limited.

Adjustments in consumption and nutrition. Evidence on the importance of fish-

dependence to explain the effect on early-life selection, in absence of any effect on

income and adaptation, supports a channel that is exclusive to the nutritional content of

fish which is harvested and used for consumption. However, this does not exclude the

possibility to respond to the shock in the ocean by reverting to markets, especially if

the relative prices of fish or nutritious food are impacted. However, L&MICs tend to

export high-quality fish caught in their waters and supplement local demand only with

imports of low-quality fish (Pauly and Zeller, 2016), limiting this possibility. In line

with this evidence, we highlight larger effects on neonatal mortality in countries with

a positive trade balance for fish products (Appendix B.3), while cannot identify any
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heterogeneous effect with respect to the ability to purchase more nutritious food.20

To verify this channel, we look at fish markets and compare the effect of in-utero ex-

posure to resource wealth with the effect of in-utero exposure to fish price shocks.

Focusing on markets allows also testing the role of aquaculture and other local market

imperfections (see, e.g., Jensen, 2007). Due to data limitations, we restrict our anal-

ysis to the Philippines, a unique setting in our context: its coastline is the 5th largest

in the world, it is home to 9% of global coral reefs, and depends highly on fish. We

gather monthly retail fish prices at the province level for the period 1990–2018 from

the Philipppine Statistics Authority. Prices are spatially heterogeneous and their pattern

over time is in line with the global trend (Appendix Figure B15). Using retail prices, we

compute the average fish price while in utero for each birth using their date of birth, and

matching DHS communities with the provinces where prices are recorded. Similar to

the effect of resource wealth, for identification, we rely on deviations in average retail

fish (log-)prices from the spatially-specific (and seasonally-adjusted) long-run trend by

adding this indicator in equation (1). Table 7 presents the results.

The effect of resource wealth on NMR is significant for the Philippines: a one-standard-

deviation negative shock results in approximately 0.75 deaths per 1,000 live births. At

the same time, a 1 percent increase in fish prices while in utero leads to an increase in

NMR of 0.07 per 1,000 live births. As higher prices capture the capacity of households

to purchase and consume fish, a positive estimate is a clear indication of the link be-

tween fish consumption and maternal health. However, conditional on the set of FEs,

the two channels operate independently on mortality, reinforcing the finding of an un-

observable or mild deterioration of natural resource quality, rather than quantity.

The mechanism recorded for the Philippines is further supported by evidence of larger

effects in areas with overall greater dependency on fish for nutrition: where fish repre-

sent a higher percentage of total animal proteins consumed, and where artisanal fisheries

are a central activity, such as in proximity to reefs (Appendix B.3). In addition, while

recorded information about maternal nutrition during each pregnancy is not available,

20The effect is homogeneous across a wide array of individual characteristics (Appendix B.10). Higher
(but not statistically significant) vulnerability is observed among male children, and children born from
younger and less educated mothers living in poorer households.
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in periods with negative shocks in the ocean’s resource wealth, women’s probability of

consuming fish is unaffected, further supporting this channel (Appendix B12). These

results are in line with the medical literature highlighting that a reduced intake of nutri-

ents derived from fish can result in malnutrition and have long-run consequences, espe-

cially in places where knowledge about appropriate food choices is limited (McGovern

et al., 2017). The effect of a negative shock in resource wealth is also independent from

other shocks that have more direct effects on fish stocks, such as water temperature or

pollution (Appendix B.2).

3.3 Resource exploitation

In L&MICs, studying the consequences of a resource shock in the ocean requires

considerations over the magnitude of overexploitation, i.e.,overfishing. In L&MICs’

coastal waters, only half of the total catch is made by small-scale and artisanal fish-

eries, while the other half is predominantly characterized by extractive forms of fishing.

In the face of more stringent regulations, the demand for fish in richer countries has

been satisfied by an increase of industrial fishing in the waters of L&MICs, also taking

advantage of a worse natural resource governance.21

To understand how the natural wealth of renewable resources interacts with their ex-

ploitation, we turn our attention to heterogeneity with respect to the type and intensity

of fishing activities defined in Section 1. For comparability, we quantify the effect

of a scarcity shock, which we define as a one-standard-deviation decrease in resource

wealth (or increase in water acidity) experienced while in utero, and we report esti-

mates in terms of percentage change with respect to the sample mean. Figure 6 plots

estimated effects of such shock at different intensities of night-time fishing (left-hand-

side figures), and extractive fishing (right-hand-side figures).

Panel A focuses on short-run effects, showing impacts on neonatal mortality and on

physical development among children. In terms of night-time fishing, both the effect on

21Marine capture fishery production in richer countries is about half its 1980s level, while in L&MICs
has increased steadily since the 1950s (Ye and Gutierrez, 2017). For anecdotal evidence, see, e.g., The
Guardian’s UK steps in to help West Africa in fight to overturn EU fishing abuses (18/03/2012).
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neonatal mortality and the effect on physical development are homogeneous along the

fishing intensity. In terms of extractive fishing, we observe instead heterogeneous ef-

fects. Areas characterized by high intensity of extractive fishing present a significantly

larger effect on neonatal mortality as compared to areas where extractive fishing is ab-

sent. A scarcity shock leads to a 1.4% increase in mortality in areas where extractive

fishing is absent, and to a 5.0% increase in areas where extractive fishing is largest.

The mortality selection induced by these effects is captured in the heterogeneity of the

impact on physical development among children. A scarcity shock leads to an improve-

ment in physical development among children that survive beyond the first month of

life by 0.7% in areas where extractive fishing is absent and by 4.3% in areas where

extractive fishing is largest.

The scarring effect among women, highlighted in Section 3.1, is evident in Panel B

of Figure 6, which focuses on long-run impacts on economic well-being and physi-

cal development among adult women. Impacts on economic well-being are homoge-

neous with respect to night-time fishing, while their magnitude decreases significantly

at higher intensities of extractive fishing. The effect varies between -0.2% and -0.1%

depending on the intensity of night-time fishing, and it decreases from -0.1% at low lev-

els of extractive fishing to -1.5% in areas where extractive fishing is highest. In terms of

physical development, we observe a negative effect only at low intensities of night-time

fishing, while the effect converges to zero at higher levels, indicating that higher inten-

sities can compensate for the negative consequences of a shock experienced in utero.

Instead, in presence of higher intensities of extractive fishing, shocks are significantly

amplified. In absence of extractive fishing, a scarcity shock leads to a decrease of 0.3%

in development, while in areas where extractive exploitation is highest, the reduction

reaches 1.8% relative to the sample mean.

Overall, these results highlight how extractive fishing, an activity that is known to de-

plete marine resources through overexploitation, reduces significantly the ability to

counteract short-run shocks. In fact, it amplifies their impacts. Night-time fishing,

by potentially generating consumption and/or income for local communities, tends to

compensate these effects in the long run, but has no effect in the short run, in line with
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the lack of parental adaptation (Section 3.2). Formal tests of heterogeneous impacts

confirm these results (Appendix B.11).

4 The aggregate effect of ocean acidification

Resource wealth in the ocean is also affected in the long-run by climate change, in par-

ticular through the process of ocean acidification. While we cannot identify the causal

effect of ocean acidification directly, Appendix C provides evidence using counterfac-

tual estimates and focusing on long-run adaptation.

We produce counterfactual estimates of NMR under the assumption that children in our

sample were exposed in utero to the ocean’s conditions in 1975. NMR attributed to

the change in the ocean’s chemical composition is computed as the community-level

average difference between the predicted NMR under real conditions and its counter-

factual prediction. In all selected countries, acidification is responsible for an increase

in neonatal deaths. In coastal areas, NMR attributed to acidification ranges, in aggre-

gate term, from 3.0 deaths per 1,000 births in the DR of Congo to 9.0 in the Philippines

and 11.9 in the Comoros Islands. This result highlights considerable heterogeneity, as

the average NMR in the corresponding period is 49.4 in the coastal area of the DR of

Congo, 14.8 in the Philippines and 26.8 in the Comoros Islands. Relative to average

NMR, contributions of acidification are larger in countries that are more dependent on

the ocean’s resources.

Following Dell et al. (2014), we also estimate equation (1) interacting the ocean’s pH

while in utero with the spatially-specific initial conditions, proxied by the 1972–1975

(standardized) average pH in the correspondent ocean’s raster point. The effect of re-

source wealth on NMR is systematically larger in locations that have been historically

exposed to more acidic waters. Because it is exactly these areas that would have had

more time to adjust to acidification shocks, these differences further support lack of

adaptation in the long-run.
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5 Conclusions

Animal species are under severe pressure from human overexploitation and climate

change. We show that the nature’s wealth is an important source of insurance for hu-

man development, highlighting the need to prioritize the conservation of wildlife and

biodiversity. Our results show that this is particularly important for communities that

are more dependent on renewable natural resources for survival, and therefore more

vulnerable to variation in nature’s wealth. United Nations (2012) highlight as priorities

to “regulate the industrial fishing sector to protect the access rights of traditional fish-

ing communities” and “introduce exclusive artisanal fishing zones and user rights for

small-scale and subsistence fisheries.” However, weak natural resource governance in

L&MICs complicates the feasibility of these goals.

In absence of effective mechanisms to incentivize conservation, policymakers need to

channel resources efficiently to the communities that need mitigation support the most.

By showing that negative shocks to nature’s wealth behave as exogenous reductions in

the availability of nutrients that can be consumed, our results provide a rationale for

investing in targeted nutritional interventions early in life. These interventions have

shown to mitigate not only the short-run consequences of malnutrition, but also its

long-term effects (Hoddinott et al., 2013; Gertler et al., 2014). Ocean acidification will

impact commercial and subsistence fishing, with negative consequences beyond the

short-run effects highlighted in this paper. As the IPCC (2013) predicts a decrease in

average ocean’s pH at surface of 0.32 units by 2100, we should be wary of large effects,

even in the face of improved mitigation capacity.
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Figure 1: Selected coastal area

Note. Geographical distribution of selected communities in coastal areas. The shaded area represents all countries surveyed
by the DHS with access to the ocean (the full list is reported in Appendix A.1). Communities in coastal area are villages and
neighborhoods within 100 km from the ocean’s shore. Inland communities are villages and neighborhoods further than 100 km
from the ocean’s shore. Appendix A.2 details the procedure followed to compute distance from shore.

Figure 2: The effect on neonatal mortality – alternative specifications
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Note. Marginal effect of resource wealth under alternative sets of FEs in the benchmark specification (Panel A), and in the within-
sibling specification (Panel B). The dependent variable is a dummy variable equal to 1 if the child died within the first month of life
and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell
closest to the child’s community during the 9 months before birth. Marginal effects are estimated using equation (1) with the set of
FEs and controls reported in the bottom panel. Main specifications are the ones used in Table 2. The sample is restricted to coastal
areas (see Section 1). Standard errors are clustered at the ocean raster data point. Appendix A.1 provides detailed information on
variables, selected surveys, and weighting procedures. Main controls are the weather and demographic controls (see Section 2).
Interactions are interaction terms between the birth month and indicator variables for different oceans.
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Figure 3: Resource wealth and neonatal mortality: type and timing of exposure

A. Scarcity vs abundance B. Timing of exposure to resource wealth
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Note. Marginal effects of resource wealth by type of shock (Panel A), and by timing of exposure (Panel B). In Panel A, estimates
are based on equation (1) where resource wealth is substituted by the share of time children were exposed in utero to different
levels of the ocean’s pH. We classify values in four bins, with the third including the historical median and mean of pH in
sampled areas. The lowest and highest values in the range are the historical minimum and maximum in the sample. For each
bin, the right vertical axis presents the average share of pregnancy in the corresponding bin. In Panel B, estimates are based on
equation (1), in which resource wealth at different points in time, is the pH (multiplied by a factor of 100) in the ocean’s cell
closest to the individual’s community in the corresponding period relative to birth; when the period refers to multiple months,
the value is averaged. In both panels, the dependent variable is NMR, a dummy variable equal to 1 if the child died within
the first month of life and 0 if the child survived, multiplied by 1,000. Estimates are based on the benchmark specification
(see Section 2). The sample is restricted to the coastal area (see Section 1). Confidence intervals at 90% level. Appendix A.1
provides detailed information on variables, selected surveys, and weighting procedures.

Figure 4: The effect on mortality early in life
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Note. Marginal effect of resource wealth experienced in utero on the probability to die. The dependent variable is a dummy variable
equal to one if the child is dead at time x from birth, and zero if the child is alive, and it is multiplied by 1,000. The 90% confidence
interval is indicated by dotted lines, beyond which the intervals are progressively shaded up to the 99% level. Within confidence
bounds, darker colors indicate a larger number of observations (see Appendix A.3). Estimates are based on equation (1) including
community FEs, birth month by birth year FEs, country by birth year FEs, country by birth month FEs, and control variables (see
Section 2). Standard errors are clustered at the ocean raster data point. Appendix A.1 provides further information on the variables
and for the list of surveys included in the study.
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Figure 5: Early-life mortality and dependence on water bodies
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Note. Marginal effect of resource wealth on NMR as a function of distance from the shore (Panel A), and of distance from another
water body (Panel B). The dependent variable is a dummy variable equal to 1 if the child died within the first month of life and 0 if
the child survived, multiplied by 1,000. Resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest
to the child’s community during the 9 months before birth. Estimates are based on equation (1) introducing interactions between
the shock and a cubic polynomial in distance. The specification includes community FEs, birth month by birth year FEs, country
by birth year FEs, country by birth month FEs, and control variables (see Section 2). The sample is restricted to the coastal area
(see Section 1). Standard errors are clustered at the ocean raster data point. The 90% confidence interval is indicated by dotted
lines, beyond which the intervals are progressively shaded up to the 99% level. Within confidence bounds, darker colors indicate
a larger number of observations (see Appendix A.3). Appendix A.1 provides detailed information on variables, selected surveys,
and weighting procedures.
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Figure 6: Scarcity shocks and resource exploitation

A. Short-run effects (all children)

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

%
 c

ha
ng

e 
fr

om
 s

am
pl

e 
m

ea
n

0 .25 .5 .75 1

Intensity of night-time fishing

Heterogeneity by night-time fishing

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

%
 c

ha
ng

e 
fr

om
 s

am
pl

e 
m

ea
n

0 .25 .5 .75 1

Intensity of extractive fishing

Heterogeneity by extractive fishing

Neonatal mortality Physical development

B. Long-run effects (female)
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Note. Estimated impacts of a one-standard-deviation increase in acidity (scarcity shock) on short-run indicators (Panel A), and on
long-run indicators (Panel B) as a function of intensity of fishing. Intensities range between 0 (no presence) and 1 (high). Estimates
based on equation (1) introducing interaction terms between resource wealth and a quadratic polynomial in the corresponding
intensity. Panel A includes the sample of all children, while Panel B includes the sample of women. Neonatal mortality is a
dummy variable equal to 1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. Physical
development is the average z-score of available anthropometric measures. Economic well-being is a household-level asset-based
index which ranges from 1 (poorest) to 5 (richest). A scarcity shock, i.e., a one-standard-deviation decrease in resource wealth
experienced while in utero. Resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the
individual’s community during the 9 months before birth. The sample is restricted to coastal areas (see Section 1). Standard errors
are clustered at the ocean raster data point. Confidence intervals at 90% level. All specifications include community FEs, birth year
by birth month FEs, country by birth year FEs, country by birth month FEs, and control variables (see Section 2). Appendix A.1
provides detailed information on variables, selected surveys, and weighting procedures. We exclude surveys for Peru as information
for the intensity of night-time fishing is not available (see Appendix A.1).
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Table 1: Descriptive statistics
Mean Std. dev. Percentiles N

1st Median 99th

(1) (2) (3) (4) (5) (6)

A. Children
Child is alive 0.92 0.27 0.00 1.00 1.00 1,587,285
Child is female 0.48 0.50 0.00 0.00 1.00 1,587,285
Birth order 2.54 1.81 1.00 2.00 9.00 1,587,285
Number of twins born with the child 0.03 0.23 0.00 0.00 2.00 1,587,285
Years since birth 12.28 7.87 0.25 11.50 30.25 1,587,285
Mother’s age at birth 24.43 5.77 14.25 23.58 40.00 1,587,285
Ocean’s pH (in utero) 8.05 0.03 7.99 8.05 8.13 1,587,285

B. Adult women
Age at first delivery 20.57 3.91 13.17 20.08 31.83 303,786
Current age 26.89 7.59 15.17 26.08 42.67 500,685
Years of schooling 7.66 4.69 0.00 8.00 17.00 435,839
Ocean’s pH (in utero) 8.07 0.03 8.02 8.07 8.14 499,140
Primary education or less 0.35 0.48 0.00 0.00 1.00 500,661
Married 0.62 0.49 0.00 1.00 1.00 500,684
No children 0.38 0.48 0.00 0.00 1.00 500,685
Working 0.50 0.50 0.00 0.00 1.00 418,712
Household head is female 0.22 0.41 0.00 0.00 1.00 500,685
Household head’s age 45.31 13.72 21.00 44.00 80.00 500,246
Household members 5.69 3.05 2.00 5.00 17.00 500,685
Household wealth 3.73 1.26 1.00 4.00 5.00 471,824
Living in urban area 0.53 0.50 0.00 1.00 1.00 500,685
Distance from shore 31.56 30.44 0.16 20.11 97.42 500,685
Distance from another water body 48.40 104.68 0.18 18.73 582.04 500,685
Altitude 187.77 407.29 1.00 37.00 2,234.00 500,685
Temperature (° C) 26.28 3.04 15.79 27.15 31.22 500,685
Precipitations (mm) 1,562.45 649.53 113.10 1,546.41 3,095.58 500,685
Intensity of extractive fishing 0.07 0.21 0.00 0.00 0.86 500,685
Intensity of nightlight fishing 0.08 0.18 0.00 0.02 0.53 500,685

C. Mortality rates
Neonatal 27.51 163.55 0.00 0.00 1,000.00 1,583,731
Postneonatal 23.67 152.02 0.00 0.00 1,000.00 1,470,093
Child 21.69 145.68 0.00 0.00 1,000.00 1,141,371
Infant 50.66 219.30 0.00 0.00 1,000.00 1,516,640
Under-five 74.22 262.12 0.00 0.00 1,000.00 1,217,000

Note. The sample is restricted to coastal areas (see Section 1). Variables for antenatal and delivery care are restricted to the last birth
for cross-survey comparability. Early-childhood mortality rates indicators are defined in Appendix A.1. Appendix A.2 provides
further information about the computation of distances. Years since birth is measured at the time of the interview and is independent
from the child being alive. Mortality rates are relative to 1,000 live births. Ocean’s pH (in utero) is the average pH in the ocean’s
cell closest to an individual’s community during the 9 months before birth; it refers to the date of birth of the child in Panel A and
to the date of birth of the woman in Panel B. Altitude, temperature, precipitations, intensity of fishing refer to the community where
the adult woman lives. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.
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Table 2: The effect on neonatal mortality
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)

A. Benchmark specification
Resource wealth -1.417 -1.419 -1.491 -2.117 -2.094 -2.083

(0.691) (0.683) (0.664) (0.754) (0.761) (0.738)
[0.041] [0.038] [0.025] [0.005] [0.006] [0.005]

Mean (dep.var.) 30.473 30.473 30.474 30.474 30.474 30.475

Identifying observations 1,583,706 1,583,706 1,581,815 1,583,703 1,583,703 1,581,812
Singleton observations 25 25 25 28 28 28
Communities 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36
Birth year range 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018

B. Within-sibling specification
Resource wealth -2.065 -2.126 -2.232 -2.459 -2.502 -2.612

(0.874) (0.855) (0.838) (0.953) (0.951) (0.935)
[0.019] [0.013] [0.008] [0.010] [0.009] [0.005]

Mean (dep.var.) 31.476 31.476 31.476 31.476 31.476 31.476

Identifying observations 1,474,945 1,474,945 1,474,945 1,474,941 1,474,941 1,474,941
Singleton observations 108,786 108,786 108,786 108,790 108,790 108,790
Communities 31,356 31,356 31,356 31,356 31,356 31,356
Countries 36 36 36 36 36 36
Birth year range 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018
Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH (multiplied by a factor of 100)
in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas
(see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All
specifications include community FEs, birth year by birth month FEs, country by birth year FEs. Seasonality is captured by either
country by birth month FEs or 5°×5° cell by birth month FEs. The full list of controls is presented in Section 2. Appendix A.1
provides detailed information on variables, selected surveys, and weighting procedures.
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Table 3: The short- and long-run effect on physical development
Dependent variables: Physical development Z-scores Indicators

W/h H/a Wasted Stunted
(1) (2) (3) (4) (5)

A. Short-run effects
Resource wealth -0.018 -0.021 -0.012 0.006 0.004

(0.010) (0.016) (0.015) (0.003) (0.004)
[0.090] [0.191] [0.407] [0.091] [0.285]

Mean (dep.var.) -0.650 -0.309 -0.984 0.080 0.234

Identifying observations 234,877 232,339 232,575 232,339 232,575
Singleton observations 1,111 1,106 1,124 1,106 1,124
Communities 25,126 24,824 25,110 24,824 25,110
Countries 33 33 33 33 33
Birth year range 1985–2018 1985–2018 1985–2018 1985–2018 1985–2018

B. Short-run effects (female)
Resource wealth 0.006 -0.014 0.024 -0.004 -0.013

(0.014) (0.019) (0.020) (0.007) (0.006)
[0.688] [0.446] [0.227] [0.595] [0.037]

Mean (dep.var.) -0.616 -0.285 -0.942 0.076 0.227

Identifying observations 112,312 111,095 111,157 111,095 111,157
Singleton observations 3,541 3,508 3,577 3,508 3,577
Communities 21,111 20,843 21,052 20,843 21,052
Countries 33 33 33 33 33
Birth year range 1985–2018 1985–2018 1985–2018 1985–2018 1985–2018

C. Long-run effects (female)
Resource wealth 0.009 0.011 0.010 0.000 -0.007

(0.004) (0.007) (0.005) (0.001) (0.003)
[0.036] [0.133] [0.069] [0.988] [0.022]

Mean (dep.var.) -0.860 -0.310 -1.386 0.082 0.301

Identifying observations 327,145 324,160 327,124 324,160 327,124
Singleton observations 683 554 683 554 683
Communities 22,848 22,635 22,848 22,635 22,848
Countries 32 32 32 32 32
Birth year range 1972–2003 1972–2003 1972–2003 1972–2003 1972–2003

Note. Estimates based on equation (1). Dependent variables are reported in the column’s header. Physical development is the
average z-score of available anthropometric measures. W/h (weight-for-height) and h/w (height-for-age) are z-scores from a ref-
erence scale. Wasted is an indicator variable equal to 1 for an for an abnormally low weight-for-height. Wasted is an indicator
variable equal to 1 for an for an abnormally low weight-for-height. Stunted is an indicator variable equal to 1 for an abnormally
low height-for-age, and 0 otherwise. Resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to
the individual’s community during the 9 months before the birth of the child (Panels A and B) or the woman (Panel C). The sample
is restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values
are reported in brackets. In Panels A and B, specifications include community FEs, birth year by birth month FEs, country by birth
year FEs, country by birth month FEs, and control variables. In Panel C, specifications include community FEs, woman’s birth
year by woman’s birth month FEs, country by woman’s birth year FEs, country by mother’s birth month FEs, and control variables
(see Section 2). Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures. All panels
exclude the survey(s) for Indonesia, Pakistan, and the Philippines because information is not available in the correspondent surveys.
Panel C further excludes the survey for Angola for the same reasons.
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Table 4: The long-run effects on economic well-being
Dependent variables: Economic

well-being
Correlates of economic well-being

Fertility Schooling Cognitive
skills

Labor supply

(1) (2) (3) (4) (5) (6)

Resource wealth 0.016 -0.008 0.030 0.000 0.006 0.014
(0.009) (0.004) (0.034) (0.002) (0.004) (0.007)
[0.062] [0.049] [0.389] [0.951] [0.130] [0.036]

Mean (dep.var.) 3.096 1.552 7.183 0.771 0.425 0.513

Identifying observations 212,741 497,982 433,480 414,000 429,173 190,665
Singleton observations 1,161 536 538 794 549 2,256
Communities 25,432 30,429 27,878 26,824 27,859 24,720
Countries 36 36 36 36 36 36
Birth year range 1972–2003 1972–2003 1972–2003 1972–2003 1972–2003 1972–2003

Women in the household (sample) Main All All All All Main

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Economic well-being is
a household-level asset-based index which ranges from 1 (poorest) to 5 (richest). Fertility is the number of births per woman.
Schooling is the number of completed years of education. Cognitive skills is an indicator variable equal to 1 if the respondent is
able to read a whole sentence in her native language or has completed at least secondary schooling, and 0 otherwise. Labor supply
is an indicator variable equal to 1 if the respondent is working at the time of the interview, and 0 otherwise. Resource wealth is the
average pH (multiplied by a factor of 100) in the ocean’s cell closest to the woman’s community during the 9 months before her
birth. The sample is restricted to coastal areas (see Section 1), and in columns (5)–(6) to women in the household that are household
head or their partner. Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets.
All specifications include community FEs, woman’s birth year by woman’s birth month FEs, country by woman’s birth year FEs,
country by woman’s birth month FEs, and control variables (see Section 2). Column (2)–(4) have a reduced number of observations
because, for comparability of estimates, we include only the random sub-sample of women that completed both the education and
the work modules. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Table 5: The effect on nightlight luminosity in the coastal area
Dependent variable: Nightlight luminosity (per 100,000 inhabitants)

(1) (2) (3) (4) (5) (6)
Negative resource shock (ocean) -0.001 -0.002 -0.001 -0.002

(0.002) (0.003) (0.002) (0.003)
[0.765] [0.468] [0.780] [0.447]

Drought -0.019 -0.021 -0.019 -0.021
(0.010) (0.010) (0.010) (0.010)
[0.055] [0.040] [0.055] [0.040]

Mean (dep.var.) 0.080 0.080 0.081 0.081 0.081 0.081

Identifying observations 30,864 30,864 30,570 30,570 30,570 30,570
Singleton observations 229 229 229 229 229 229
Grid cells 1,470 1,470 1,456 1,456 1,456 1,456
Year range 1992–2012 1992–2012 1992–2012 1992–2012 1992–2012 1992–2012

Controls - Yes - Yes - Yes

Note. Estimates based on equation (2). The dependent variable is the satellite-based nightlight luminosity at year t in the corre-
sponding grid cell i. Luminosity ranges between 0 (lowest) and 1 (highest), and is normalized by population in the cell. Negative
resource shock (ocean) is an indicator variable taking value one when the yearly average pH in the nearest open ocean’s waters is
below the 15th percentile of the grid cell i’s historical distribution. Drought is an indicator variable taking value 1 when annual
rainfall in the grid cell is below the 15th percentile of the grid cell i’s historical rainfall distribution. All specifications include grid
cell FEs and 5°×5° cell by year FEs. Controls include the levels of rainfall and temperature, oxygen concentration in the nearest
coastal waters, population size and its square value. The sample includes only grid cells in coastal areas where at least one DHS
community is found (see Section 1). Appendix A.1 provides further information on the variables, and the list of surveys included
in the study.
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Table 6: Behavioral adaptation and health investments
Dependent variables: Antenatal

investment
Delivery

investment
Postnatal investment

Healthcare Breastfed Vaccinated
(1) (2) (3) (4) (5)

Resource shock 0.004 -0.004 0.004 0.001 -0.005
(0.007) (0.004) (0.009) (0.003) (0.005)
[0.590] [0.374] [0.630] [0.691] [0.317]

Mean (dep.var.) 1.698 1.299 0.441 0.972 0.293

Identifying observations 263,697 256,548 101,075 206,350 210,372
Singleton observations 1,100 1,191 3,078 2,336 2,212
Communities 29,942 29,822 18,445 28,029 27,964
Countries 36 36 34 36 36
Birth year range 1985–2018 1985–2018 2002–2018 1987–2018 1987–2018

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Antenatal investment and
delivery investment range from 0 (no investment) to 2 (larger investment). For postnatal investment, healthcare is an indicator
variable equal to 1 if the mother or the child younger than 2 years old received postnatal care within 2 days of birth. Breastfed is an
indicator variable equal to 1 if the mother reports ever breastfeeding the child, and 0 otherwise. Vaccinated is an indicator variable
equal to 1 if the mother reports or the vaccination card shows the completion of the basic cycle of vaccinations according to the
World Health Organization (WHO), and 0 otherwise. For cross-survey comparability, the sample for variables relative to antenatal
and delivery investments and to postnatal healthcare is restricted to the last birth, independently from the child being alive at the
time of the interview. For the remaining variables, the sample is restricted to living children under three years old and can therefore
be affected by mortality selection. Resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest
to the child’s community during the 9 months before birth. The sample is restricted to coastal areas (see Section 1). Standard
errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. For cross-survey comparability,
the sample in columns (1)–(3) is restricted to the last birth, independently from the child being alive, while in columns (4)–(5) is
restricted to living children under three years old. All specifications include community FEs, birth year by birth month FEs, country
by birth year FEs, country by birth month FEs, and control variables (see Section 2). Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures. Column (3) excludes the survey(s) for Indonesia and Morocco because
information is not available in the corresponding surveys.

Table 7: Market prices and early-life mortality
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5)
Resource shock -4.887 -4.997 -4.643 -4.728

(2.620) (2.630) (2.629) (2.685)
[0.064] [0.059] [0.079] [0.080]

Fish price (in utero) 7.274 7.361 7.243 7.580
(3.445) (3.443) (3.436) (3.368)
[0.036] [0.034] [0.036] [0.026]

Mean (dep.var.) 15.410 15.410 15.410 15.410 15.412

Identifying observations 82,739 82,739 82,739 82,739 82,730
Singleton observations 9 9 9 9 9
Communities 2,751 2,751 2,751 2,751 2,751
Countries 1 1 1 1 1
Birth year range 1990–2017 1990–2017 1990–2017 1990–2017 1990–2017

Weather controls - - - Yes Yes
Demographic controls - - - - Yes

Note. Estimates based on equation (1) using the benchmark specification. The dependent variable is an indicator variable equal to
1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH
(multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. Fish price (in
utero) is the average fish price (including all available prices and reported in logarithms) in the province of birth of the child during
the 9 months before birth. The sample is restricted to communities in the coastal area of the Philippines (see Section 1) and to the
period 1990–2018 (due to data availability; see Appendix B.11). Standard errors are reported in parenthesis and clustered at the
district by ocean raster data point, p-values are reported in brackets. All specifications include community FEs, birth year by birth
month FEs, district by birth year FEs, and district by birth month FEs. The full list of controls is presented in Section 2. Appendix
A.1 provides detailed information on variables, selected surveys, and weighting procedures.
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ONLINE APPENDIX

Supplementary material to The Effect of Nature’s Wealth on Human Development:

Evidence from Renewable Resources

Alex Armand, Ivan Kim Taveras

A Data and methodological procedures

A.1 Variables, data sources, and the selection of DHS surveys

Variable Description
Altitude Communities’ elevation in meters from the SRTM–Digital Elevation Model for the specified coordi-

nate location. The variable is available in the DHS surveys (ICF, 2019).
Basemaps Basemaps were created using ArcGIS® software by Esri®. Basemaps are used in line with the Esri

Master License Agreement, specifically for the inclusion of screen captures in academic publications.
We use the World Topographic Map.

Behavioral adaptation Information is based on parental health investments obtained from the DHS Program (ICF, 2019).
We homogenize information across surveys and make use of the following variables:
Antenatal investment is equal to 0 if no antenatal visit is completed, 1 if at least one visit is completed
but without a health professional, and 2 if at least one visit is completed with a health professional. In
Appendix B.9, this indicator is split into individual variables. Any visit is an indicator variable equal
to 1 if the mother attended any visit during pregnancy for antenatal care, and 0 otherwise. Number of
antenatal care visits is the number of visits attended during pregnancy for antenatal care (reported in
logarithms, adding one unit to allow for zero values). With health professional is an indicator variable
equal to 1 if the mother was attended by a health professional (doctor, nurse or other professional)
during pregnancy, and 0 otherwise.
Delivery investment is equal to 0 if delivery is performed outside a health center without a health
professional, 1 if performed outside a health center with a health professional, and 2 if delivery is
performed in a health center with a health professional. In Appendix B.9, this indicator is split into
individual variables. In health center is an indicator variable equal to 1 if the mother gave birth in a
health center, and 0 otherwise. With health professional is an indicator variable equal to 1 if delivery
was attended by a health professional (doctor, nurse or other professional), and 0 otherwise.
For postnatal investment, healthcare is an indicator variable equal to 1 if the mother or the child
younger than 2 years old received postnatal care within 2 days of birth. Breastfed is an indicator
variable equal to 1 if the mother reports ever breastfeeding the child, and 0 if the mother reports to
have never breastfed the child. For cross-survey comparability, the sample is restricted to children
who live with their mother and are alive, and are less than three years old. Vaccinated is an indicator
variable equal to 1 if the mother reports or shows a vaccination card for the following doses: BCG, 3
doses of DPT-containing vaccines, 3 doses of polio vaccine (excluding polio vaccine given at birth),
and 1 dose of MCV. It is 0 otherwise. The sample is restricted to children under three years old for
comparability (Croft et al., 2018).

Child mortality Information is based on the DHS Program surveys (ICF, 2019). DHS surveys collect respondents’
full birth history and includes information on all children’s year and month of birth, sex, birth order,
whether they are twins, and the date of death when it applies. Note that only live births are recorded.
This information is also used to create age at first delivery, and fertility (the number of live births at
the time of the interview). We build mortality rates by multiplying the following indicators by 1,000
(the variables are set to missing if the date of the interview is before the end of the period considered
for defining mortality):
Neonatal (NMR): indicator equal to 1 if the child died before their first month of life, and 0 otherwise.
Note that the DHS Program reports two ages of death. The first is self-reported, while the second
gives a calculated age from reported information. When dates of birth are not disclosed, these are
imputed by the DHS Program (Croft et al., 2018). We also use 67 special cases of self-reported age
of death (198 and 199, which indicate that age at death was reported as a number of days and that
the exact number is unknown), but results are robust to dropping these cases.
Post-neonatal (PMR): indicator equal to 1 if the child died between the ages of 1–11 months, and 0
otherwise.
Child (CMR): indicator equal to 1 if the child died between the ages of 12–59 months, and 0 other-
wise.
Infant (IMR): indicator equal to 1 if the child died between the ages of 0–11 months, and 0 otherwise.
Under-5 (U5MR): indicator to 1 if the child died between the ages of 0–59 months, and 0 otherwise.

(continued on next page)
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Variable Description
Chlorophyll Chlorophyll concentration in coastal waters is measured in mg/m3 (AWV weights). We use data from

the GlobColour project (d’Andon et al., 2009), which provides monthly global rasters for the period
1997–2018 at the 25-meter resolution by merging satellite imaging from five different sources made
available by the European Space Agency and NASA.

Conflict Number of violent events (and fatalities) in each cell for a specific year. The data are obtained from
the Uppsala Conflict Data Program (UCDP) (Sundberg and Melander, 2013).

Distances For shorelines, distance (in a straight line) between the DHS cluster and the closest shoreline. Water
bodies are identified from the GSHHG database (Wessel and Smith, 1996). We use the following two
bodies. For the ocean’s shoreline, we consider level 1 (continental land masses and ocean islands,
except Antarctica). For other water bodies, we consider levels 2, 3 and 4 (lakes, islands in lakes,
and ponds in islands within lakes and all levels included in the river database). See Appendix A.2
for details about the procedure. For coral reefs, distance (in a straight line) between the DHS cluster
and the closest coral reef. Geographical distribution of warm-water coral reefs is obtained from
UNEP-WCMC (2018).

Drought Drought is an indicator variable taking value 1 when annual rainfall in the grid cell is below the 15th

percentile of the grid cell’s rainfall distribution between 1992–2012 (Corno et al., 2020).
Economic well-being The DHS records information on asset ownership and provide an asset-based wealth index ranging

from 1 (poorest) to 5 (richest).
Extractive fishing Total number of hours from industrial fishing activities in the cell built using data from the Global

Fishing Watch (Kroodsma et al., 2018), which tracks more than 70,000 industrial fishing vessels from
2012 to 2016. Because variation is available only for the period 2012–2016, we first compute total
fishing hours in a global grid at 1°×1° resolution and then average each cell over the available period.

Fish dependency Average fish protein supply as proportion of all animal protein supply. The data are obtained from
the FAOSTAT database (FAO, 2019).

Fish prices Monthly retail price for fish at the province level from 1990 to nowadays. The series is provided by
the Philippine Statistics Authority (2020) provides. See Appendix B.11 for details.

Human capital We make use of schooling, i.e., the number of completed years of education based on the respondent’s
self-reported highest level of education (comparable across countries), and of cognitive skills, i.e., an
indicator variable of whether the respondent is able to read a whole sentence in her native language
(as observed by enumerators) or has, at least, completed secondary schooling.

Marriage DHS surveys collect respondents’ civil status, date of birth and, when available, their partner’s age
in years. We make use of the following variables. Married is an indicator variable equal to 1 if the
respondent is currently married or living in an union, and 0 otherwise. Age difference with partner is
the difference in years between the respondent and her partner.

Nightlight Average night-time light emission from the 0.5°×0.5° DMSP-OLS Night-time Lights Time Series
Version 4 calibrated (Elvidge et al., 2014). Values range between 0 (lowest luminosity) and 1 (high-
est observed value). The time series are available from 1992–2012 and are downloaded from the
PRIO-GRID database (Tollefsen et al., 2012). Data are spatially merged to DHS clusters using their
geolocation.

Night-time fishing We use Automatic Boat Identification System for VIIRS Low Light Imaging Data (Elvidge et al.,
2015) to identify detections. The algorithm detects boats using nightlight captured from satellite
imaging (Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band). Using individual daily
detections (which include geolocation), we build a 1°×1° global grid with the sum of detections for
the period 2017–2019. We classify as boats only the strongest detections (quality flag rating equal
to 1). Data are not available over the South Atlantic Anomaly. To avoid false positives, we set to
missing DHS surveys for Peru.

Nutritional indicators The DHS records objective measurements performed by the DHS data collection team. Standardized
distributions are the CDC Standard Deviation-derived Growth Reference Curves (Croft et al., 2018).
The following indicators are used:
Underweight is, for children, an indicator variable equal to 1 if the weight-for-age z-score is smaller
than 2 or, for adults, if the BMI is lower than 18.5, and 0 otherwise.
W/h (weight-for-height) is the z-score from the reference curve, while wasted is an indicator variable
equal to 1 if the weight-for-height z-score is smaller than 2, and 0 otherwise.
H/a (height-for-age) is the z-score from the reference curve, while stunted is an indicator variable
equal to 1 if the height-for-age z-score is smaller than 2, and 0 otherwise.
Physical development is the average between height-for-age and weight-for-height z-scores from the
reference curves.

Ocean chemistry Data are obtained from the Hadley Global Environment Model 2 - Earth System model (Jones et al.,
2011), provided by the European Space Agency’s Pathfinders-OA project (Sabia et al., 2015). Data
are provided as monthly global rasters at the 1°×1° resolution for a series of chemical features of the
ocean in open waters. We use two variables: pH at surface and dissolved O2 concentration.

Ocean’s features We obtain sea surface temperature (SST), wind speed, total precipitations and air (2-meter) tempera-
ture in areas covered by the ocean using the ERA5 dataset (C3S, 2017). ERA5 provides hourly and
monthly estimates of several atmospheric, land, and oceanic climate variables combining model data
with observations from across the world. It provides a 0.25º x 0.25º hourly gridded dataset. For all
variables, we average daily values to monthly data and spatially merge it to DHS clusters using their
geolocation and each child’s birth date.

(continued on next page)
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Variable Description
Population It measures population size as the number of persons in 1990, 1995, 2000, and 2005 within the

PRIO-GRID grid cell. Information is obtained from the Gridded Population of the World version 3.
The data are downloaded from the PRIO-GRID version 2.0 database (Tollefsen et al., 2012), a vector
grid network with a resolution of 0.5°×0.5° covering all terrestrial areas of the world, and spatially
merged to DHS clusters using their geolocation.

Protein consumption Information is based on the DHS Program surveys (ICF, 2019). DHS surveys collect respondents’
food consumption for a variety of items. This information is available only for a restricted number
of surveys: Cambodia (2005), Dominican Republic (2007), Egypt (2008), Ghana (2008), Guatemala
(2015), Guyana (2009), Haiti (2006), Liberia (2007), Madagascar (2008), Namibia (2006), Nigeria
(2008), Philippines (2008), Sierra Leone (2008), and Timor-Leste (2009 and 2016). We focus on two
indicator variables: fish is an indicator variable that equals 1 if the female respondent ate fresh or
dried fish or shellfish, or foods containing those ingredients, during the day previous to the interview,
and 0 otherwise; meat and dairy is an indicator variable that equals 1 if the female respondent ate any
meat (beef, pork, lamb, or chicken), eggs, dairy products (cheese, yogurt, or other milk products), or
foods containing those ingredients during the day previous to the interview, and 0 otherwise.

Trade balance Sum of exports and re-exports of fish products, minus the sum of imports of fish products. The data
are obtained from the FAOSTAT database (FAO, 2019). In the analysis of heterogeneity of the effect
of the ocean’s acidity, we opt for a time-invariant version for the period 1976-2017.

Weather Yearly total amount of precipitation (in millimeters) in the cell is based on monthly meteorological
statistics from the GPCP v.2.2 Combined Precipitation Data Set, which is available for the years
1979–2014. Yearly mean temperature (°C) in the cell is based on monthly meteorological statistics
from GHCN/CAMS, which is available for the period 1948–2014. Data are downloaded from the
PRIO-GRID version 2.0 database (Tollefsen et al., 2012), a vector grid network with a resolution of
0.5°×0.5° covering all terrestrial areas of the world, and spatially merged to DHS clusters using their
geolocation.

Work Indicator variable equal to 1 if the respondent is working, and 0 otherwise. DHS surveys record the
employment status of respondents at the time of the interview.

Note. For time-varying variables, missing values are linearly interpolated.

Table A2 presents the Demographic and Health Surveys (DHS) included in the analysis.

The availability of multiple surveys for some countries can lead to issues related to

survey selection. Table A3 presents estimates of equation (1) assuming different rules

for the selection of surveys. When including multiple surveys for the same country, each

observation is weighted by the product of the DHS sampling weight with a re-weighting

factor, i.e., the ratio between the sum of the DHS sampling weights at the country-

survey level and the sum of the DHS sampling weights at the country level. For adult-

level estimates, we re-weight observations following the same procedure, repeating the

computation of weights for different variables because the inclusion in each survey is

variable-dependent. For adult outcomes relative to schooling and work, we include only

observations that completed both the education and work module. This selection affects

only the India 2015–2016 survey, for which we select only the women that completed

the state module), and we use the weights corresponding to this sample (IIPS and ICF,

2017).
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Table A2: Sampled countries
Country DHS surveys available Birth years matched Number of births
Angola 2015 1978-2016 42002
Bangladesh 2000, 2004, 2007, 2011, 2014 1972-2014 183734
Benin 1996, 2001, 2012 1972-2012 84351
Cambodia 2000, 2005, 2010, 2014 1972-2014 150872
Cameroon 1991, 2004, 2011 1972-2011 81516
Colombia 2010 1973-2010 89317
Comoros 2012 1975-2012 10957
DR Congo 2007, 2013 1972-2014 83313
Côte d’Ivoire 1994, 1998, 2012 1972-2012 57785
Dominican Republic 2007, 2013 1972-2013 76051
Egypt 1992, 1995, 2000, 2005, 2008, 2014 1972-2014 303549
Gabon 2012 1974-2012 22908
Ghana 1993, 1998, 2003, 2008, 2014 1972-2014 74319
Guatemala 2015 1978-2015 54993
Guinea 1999, 2005, 2012, 2018 1972-2018 104910
Guyana 2009 1974-2009 10538
Haiti 2000, 2006, 2012, 2016 1972-2017 106348
Honduras 2011 1974-2012 48315
India 2015 1975-2016 1308794
Indonesia 2003 1972-2003 75228
Kenya 2003, 2008, 2014 1972-2014 127484
Liberia 2007, 2013 1972-2013 52464
Madagascar 1997, 2008 1972-2009 68446
Morocco 2003 1972-2004 32256
Mozambique 2011 1974-2011 37946
Myanmar 2016 1980-2016 22989
Namibia 2000, 2006, 2013 1972-2013 51966
Nigeria 1990, 2003, 2008, 2013, 2018 1972-2018 394614
Pakistan 2006 1972-2007 38542
Peru 2000, 2004, 2005, 2006, 2007, 2008, 2009 1972-2009 182648
Philippines 2003, 2008, 2017 1972-2017 104246
Senegal 1993, 1997, 2005, 2010, 2012, 2014, 2015, 2016 1972-2016 216204
Sierra Leone 2008, 2013 1972-2013 68370
Tanzania 1999, 2010, 2015 1972-2016 77212
Timor-Leste 2009, 2016 1974-2016 64620
Togo 1998, 2013 1972-2014 51612

Note. From all DHS surveys available on May 2020, we include only surveys for countries with direct access to the ocean and
surveys with available geocoding of primary sampling units. The number of births is computed as the total number of observations
in the birth histories (DHS birth recode).

Table A3: Robustness to selection of surveys
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

DHS surveys: All Latest Largest Random
(1) (2) (3) (4)

Resource wealth -1.491 -1.420 -1.803 -1.609
(0.664) (0.701) (0.654) (0.675)
[0.025] [0.043] [0.006] [0.018]

Mean (dep.var.) 30.474 26.601 27.328 29.036

Identifying observations 1,581,815 794,713 861,938 757,132
Singleton observations 25 32 35 30
Communities 31,380 17,389 18,476 16,416
Countries 36 36 36 36
Birth year range (min) 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH (multiplied by a factor of 100)
in the ocean’s cell closest to the child’s community during the 9 months before birth. All specifications include community FEs,
birth year by birth month FEs, country x birth year FEs, country x birth month FEs, and controls (see Section 2). In column (1),
observations are re-weighted to correct for oversampling of countries surveyed multiple times (see Appendix A.1). Standard errors
(in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. “Latest” indicates that only the latest
survey is selected, “Largest” indicates that the survey with the largest number of observations is selected, “Random” indicates that
one random survey is selected among the available ones. Appendix A.1 provides further information on the variables and the list
of surveys included in the study.
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A.2 Distances

The computation of distances are based on the geocoding of DHS clusters. For each

household, distance is the minimum straight distance to the coast and closest alterna-

tive water source computed using v.distance function in GRASS. Table A4 presents

descriptive statistics for households living within and beyond 100 km from the shore.

Figure A1 presents an example of the procedure for West Africa. We discuss robustness

of main findings to measurement error in the geolocation in Appendix B.5.

Table A4: Descriptive statistics for coastal and inland areas
Coastal area Inland area

Mean Std. dev. Mean Std. dev. Observations
(1) (2) (3) (4) (5)

A. Children
Child is alive 0.92 0.27 0.91 0.29 4555492
Child is female 0.48 0.50 0.48 0.50 4555492
Birth order 2.54 1.81 2.66 1.84 4555492
Number of twins born with the child 0.03 0.23 0.03 0.22 4555492
Years since birth 12.28 7.87 12.09 7.76 4555492
Mother’s age at birth 24.43 5.77 24.16 5.54 4555492
Ocean’s pH (in utero) 8.05 0.03 8.06 0.03 4555492

B. Adult women
Age at first delivery 20.88 4.23 20.45 3.82 1385467
Current age 30.65 9.80 29.97 9.76 1951250
Years of schooling 7.25 4.84 6.04 4.90 1376076
Ocean’s pH (in utero) 8.06 0.03 8.07 0.03 977187
Primary education or less 0.41 0.49 0.49 0.50 1951201
Married 0.67 0.47 0.70 0.46 1950104
Working 0.54 0.50 0.55 0.50 1304776
Household head is female 0.22 0.41 0.17 0.38 1951247
Household head’s age 46.10 13.11 46.37 13.17 1949918
Household members 5.62 3.03 6.06 3.11 1951250
Household wealth 3.72 1.28 3.22 1.39 1776572
Living in urban area 0.53 0.50 0.34 0.47 1951250
Distance from shore 31.26 30.21 462.44 289.57 1951250
Distance from another water body 47.32 102.12 24.87 23.98 1951250
Altitude 190.22 408.72 489.97 613.08 1951244
Temperature (° C) 26.09 3.21 24.92 3.70 1951250
Precipitations (mm) 1557.41 674.18 1298.33 673.22 1951250
Intensity of extractive fishing 0.06 0.20 0.05 0.13 1951250
Intensity of night-time fishing 0.09 0.20 0.08 0.16 1951250

C. Mortality rates
Neonatal 27.51 163.55 37.24 189.34 4545390
Postneonatal 23.67 152.02 24.28 153.90 4200570
Child 21.69 145.68 27.67 164.02 3265547
Infant 50.66 219.30 60.78 238.93 4355601
Under-five 74.22 262.12 89.55 285.54 3504461

Note. Descriptive statistics by proximity to the ocean for all communities in selected countries with access to ocean. Coastal area
includes all communities within 100 km from the ocean’s shore (see Section 1). Inland area includes all communities that are
farther away than 100 km from the ocean’s shore. Means are reported in columns (1) and (3), standard deviations are reported
in columns (2) and (4). Column (5) presents the total number of observations. Years since birth is measured at the time of the
interview and is independent from the child being alive. Mortality rates are relative to 1,000 live births. Ocean’s pH (in utero)
is the average pH in the ocean’s cell closest to an individual’s community during the 9 months before birth; it refers to the date
of birth of the child in Panel A and to the date of birth of the woman in Panel B. Appendix A.1 provides detailed information on
variables, selected surveys, and weighting procedures.
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Figure A1: Distance to ocean and other water sources: an example

A. All DHS communities B. Distance from shore

Note. Geolocation of DHS communities (Panel A) and closest points to the ocean’s shore (Panel B). Lines represent straight
distance from a community to the closest point on the coast’s shoreline or on the shoreline of another water body. Basemap
source: Esri. See Appendix A.1 for data sources and attributions.

A.3 Coloring of shaded graphs

In selected graphs, the color intensity is reflecting the share of observations at a specific

distance (or time). For Figures 4 and B8, the color intensity is the ratio between the

difference between the (smoothed) density of the distribution of the number of obser-

vations in a specific iteration and 0.7 × the lower bound of the same distribution for

all iterations, and the difference between the 99th percentile of the distribution of the

number of observations in all iterations and 0.7 × the lower bound of the same distri-

bution for all iterations. For Figures 5 and B1, the color intensity is defined as the ratio

between the square root of the (smoothed) density of the distribution of the number of

observations by distance from shore and the square root of the 90th percentile in the

same distribution. Parameters are chosen to guarantee visibility.

B Supplementary results

B.1 Robustness to alternative definitions of coastal area

Table B1 shows how estimates of the effect of resource wealth on NMR vary under

different criteria for defining coastal areas.

Proximity. We define coastal area using a proximity criteria based on 100km from

the ocean’s shore. Panel A of Figure B1 shows that the total number of live births
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Table B1: The effect on neonatal mortality: varying sample selection criteria
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Altitude criteria: ≤ 100m ≤ 100m - - ≤ 100m ≤ 100m
Distance restriction: - - ≤ 40km ≤ 40km ≤ 40km ≤ 40km

Exclusion of estuaries: - Yes - Yes - Yes
(1) (2) (3) (4) (5) (6)

Resource wealth -1.627 -1.593 -2.923 -3.072 -2.942 -3.071
(0.776) (0.759) (0.797) (0.944) (0.836) (0.996)
[0.037] [0.036] [0.000] [0.001] [0.000] [0.002]

Mean (dep.var.) 31.116 31.431 29.489 29.631 29.938 30.113

Identifying observations 1,137,356 978,016 1,061,342 893,056 845,155 685,815
Singleton observations 19 15 25 21 22 18
Communities 22,612 18,801 21,682 17,616 17,600 13,789
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH (multiplied by a factor of 100)
in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas (see
Section 1) and according to the criteria reported in column’s header. Estuaries are defined as communities that are at a distance
of 10 km or less from the ocean’s shore and at a distance of 10 km or less from another water source. All specifications include
community FEs, birth year by birth month FEs, country by birth year FEs, country by birth month FEs, and control variables (the
full list of controls in Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported
in brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

considered is clearly affected by the distance bound. Panel B shows estimates of the

effect of resource wealth on neonatal mortality by varying the distance bound from 20

to 250 km, allowing x to increase by 1 unit after each iteration. The largest magnitude

is observed when distance is at most 40 km.

Figure B1: Sample selection by distance from shore

A. Number of live births B. Effect of resource wealth (in utero)
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Note. Number of live births (decomposed by region) included in the dataset by distance from the shore (Panel A), and marginal
effects of resource wealth on NMR by sample selection according to proximity to the shore (Panel B). Estimates are based on
equation (1) when the sample is selected according to bounds (reported in the horizontal axis). Appendix A.2 details the procedure
for computing distances. Each specification includes community FEs, birth year by birth month FEs, country by birth year FEs,
country by birth month FEs, and control variables (see Section 2). The 90% confidence interval is indicated by dotted lines, beyond
which the intervals are progressively shaded up to the 99% level. Within confidence bounds, darker colors indicate a larger number
of observations (see Appendix A.3). Appendix A.1 provides detailed information on variables, selected surveys, and weighting
procedures.

Altitude and estuaries. Figure B2 shows communities in coastal areas highlighting
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the ones selected according to the criteria of Christian and Mazzilli (2007), who select

the land margin within 100 km of the coastline or less than 100 meters above the mean

low tide. In addition, we can include or exclude areas where the ocean’s chemical

composition has a higher probability of human contamination, such as estuaries.

Figure B2: Sample selection using proximity and altitude criteria

Note. Communities in coastal areas distinguished by altitude (Panel A), and an example (Panel B). The full list of countries
and surveys included in the study is reported in Appendix A.1. See Section 1 for a definition of coastal area.

B.2 Coastal features and income processes

In our main analysis, we focus on ocean’s pH as a proxy for resource wealth. Figure B3

shows descriptive statistics of pH at surface averaged at global level. Figure B4 shows

the evolution of the average shock in the sample over time, computed as residual vari-

ation in pH, after conditioning on the set of FEs of the benchmark specification. Table

B2 shows descriptive statistics of the measure of shock under the different specifica-

tions presented in Table 2, and the correspondent standardized effect. In this section,

we focus on other features in the ocean and in coastal areas that could influence income

processes in sampled communities.

Other ocean’s characteristics. Columns (1)–(7) in Table B3 presents estimates of the

effect of resource wealth on NMR using equation (1) and controlling for a variety of

ocean’s characteristics obtained from the ERA5 dataset. Column (7) further controls for

weather characteristics inland including yearly rainfall and temperature at the commu-

nity level, using data from the PRIO-GRID database. Panels A–D in Figure B5 presents

the time series and the seasonality component for these variables.

Pollution and other chemical features of the ocean. Columns (8)–(9) in Table B3

presents estimates controlling for pollution in coastal waters, which get contaminated
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from pollutants deriving from human activity and production. Higher contamination

favors algae abundance, which negatively impacts the chance of survival of marine life.

We proxy pollution using a measure of algae abundance in coastal waters (chlorophyll

concentration) based on satellite data obtained from the GlobColour project from 1997–

2018.2 The presence of pollution also impacts the availability of another input to marine

life that is more closely related to fish survival, i.e., oxygen. In our main analysis,

we always control for the (dissolved) oxygen concentration in the ocean’s water. At

low levels of concentration (hypoxic conditions), marine life change behavior to reach

areas with higher oxygen levels, while at extremely low levels (dead-zones), mortality

prevails. It is important to note that oxygen concentration is also affected by climate

change because higher temperatures lead to reduced oxygen concentration. The global

sea surface temperature (SST) increased by 0.7 °C since the end of the 19th century

(Keeling et al., 2010). In column (7) we also control for this variable obtained from the

HadGEM2-ES model. Because pH and oxygen concentration are chemical properties

determined by common factors, to isolate the effect of the ocean’s pH in equation (1),

we always include as control the residual variation in oxygen concentration, rather than

its levels. Residual variation is computed as residuals of a linear regression of oxygen

concentration in grid cell i at time t on the contemporaneous pH in the same grid cell.

Controlling for other chemical features does not affect these estimates.3 Panels E–F in

Figure B5 presents the time series and the seasonality component for these variables.

2We do not use this variable as control in the main text due to the potential endogeneity of chlorophyll
concentration with idiosyncratic shocks related to child mortality.

3A large literature highlights how the ocean’s chemical composition impacts the chance of survival,
the reproductive behavior, size, and spatial distribution of all marine species Doney et al. (2020).
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Figure B3: Variation in the ocean’s acidity for communities in the coastal area
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Note. Yearly average pH at surface in the period 1972–2018 (Panel A), and monthly comparison between mean pH for each
year in the left axis, and median pH for the whole period in the right axis (Panel B). Variation is restricted to cells matched
to the sample’s communities. In Panel A, the solid red line shows the quadratic trend in the series.

Figure B4: Evolution over time of shocks in resource wealth
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Note. Evolution over time of the average deviation in acidity levels from spatially-specific (and seasonally-adjusted) long-run
trends. Resource wealth is defined in Section 2 and is computed using the benchmark specification. Variation is restricted to cells
matched to the sample using the nearest cell in the open waters. The solid red line shows the quadratic trend over the period.

Table B2: Resource wealth and standardized effects
Benchmark specification Within-sibling specification

Mean Std.
dev.

Effect Std.
effect

Mean Std.
dev.

Effect Std.
effect

(1) (2) (3) (4) (5) (6) (7) (8)
Shock (specification 1) -0.00 0.38 -1.42 -0.54 0.00 0.30 -2.06 -0.63
Shock (specification 2) -0.00 0.37 -1.42 -0.53 0.00 0.30 -2.13 -0.64
Shock (specification 3) -0.00 0.37 -1.49 -0.56 0.00 0.30 -2.23 -0.67
Shock (specification 4) -0.00 0.26 -2.12 -0.55 -0.00 0.22 -2.46 -0.53
Shock (specification 5) -0.00 0.25 -2.09 -0.53 -0.00 0.21 -2.50 -0.53
Shock (specification 6) -0.00 0.25 -2.08 -0.53 -0.00 0.21 -2.61 -0.55

Note. Descriptive statistics of shocks in resource wealth under the benchmark and the within-sibling specifications. Columns (3)
and (7) refer to the point estimates in Table 2. The standardized effect is rescaling point estimates in terms of standard deviations in
the residual variation of resource wealth. Residual variation is obtained from the residuals of a linear regression using the ocean’s
pH experienced in utero as dependent variable and the set of FEs used in equation (1) as independent variables.
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Figure B5: Additional weather characteristics in the ocean’s matched areas
A. Sea surface temperature B. 2-meter temperature
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Note. Descriptive statistics of weather characteristics measured in the same point where ocean’s acidity is measured. The figures
on the left present yearly averages, with the solid red line showing the quadratic trends in the series. The figures on the right show
the monthly averages for each year in the sample, with the darker line representing the median in the whole period. Variation is
restricted to cells matched to the sample’s communities. Each community is assigned with a value using the nearest cell in the
ocean. Appendix A.1 provides further information on the variables.
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Table B3: Neonatal mortality and shocks to income processes
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Closest point in the ocean
Resource wealth -2.034 -2.192 -2.140 -2.084 -3.284

(0.745) (0.744) (0.741) (0.743) (1.513)
[0.007] [0.003] [0.004] [0.005] [0.031]

Sea surface temperature (in utero) 1.467 1.695 1.549
(0.925) (0.918) (1.064)
[0.113] [0.066] [0.146]

Wind speed (in utero) 1.752 1.596 2.159
(1.510) (1.505) (1.547)
[0.247] [0.290] [0.164]

Total precipitations (in utero) 0.008 0.007 0.009
(0.008) (0.008) (0.008)
[0.289] [0.351] [0.265]

2-meter temperature (in utero) 0.674 0.902 0.040
(0.898) (0.892) (1.039)
[0.453] [0.312] [0.969]

Chlorophyll concentration (in utero) 0.295 0.301
(0.583) (0.584)
[0.614] [0.606]

Oxygen concentration (in utero) -0.069
(0.306)
[0.822]

Location of birth
Temperature (year of birth) -0.121

(0.427)
[0.778]

Total precipitations (year of birth) -0.003
(0.002)
[0.126]

Mean (dep.var.) 29.645 29.645 29.645 29.645 29.645 29.645 29.645 24.937 24.937

Identifying observations 1,518,357 1,518,357 1,518,357 1,518,357 1,518,357 1,518,357 1,518,357 451,212 451,212
Singleton observations 23 23 23 23 23 23 23 247 247
Communities 31,380 31,380 31,380 31,380 31,380 31,380 31,380 16,409 16,409
Countries 36 36 36 36 36 36 36 36 36
Birth year range (min) 1979 1979 1979 1979 1979 1979 1979 1998 1998
Birth year range (max) 2018 2018 2018 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is
the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the woman’s community during the 9 months before her birth. In utero indicates that the variable is the average value in the ocean’s
cell closest to the child’s community during the 9 months before birth. Year of birth indicates that the variable is the average value in the child’s community’s grid cell in the year of birth. The sample is restricted
to coastal areas (see Section 1). In columns (8)–(9), the sample is further restricted to births between 1997–2018 due to data availability (observations are reweighted to account for dropped surveys), and to
areas away from estuaries to alleviate endogeneity concerns. Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All specifications include community
FEs, birth year by birth month FEs, country by birth year FEs, 5°×5° grid cell by birth month FEs, and demographic controls (see Section 2). Appendix A.1 provides detailed information on variables, selected
surveys, and weighting procedures.
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Conflict. Using information about conflict events from the Uppsala Conflict Data Pro-

gram (UCDP) database at the 5°×5° resolution, we estimate equation (1) adding con-

trols for the presence and the intensity of conflict while in utero. Table B4 presents

estimates of the effect on NMR. Due to data availability, the birth year range is re-

duced to children born after 1984. For comparability, columns (3) and (6) are therefore

restricted to the sample included in column (1) and (4), respectively.

Table B4: Comparing the effect size of ocean acidification and conflict
Dependent variable: NMR (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)
Resource wealth -1.006 -1.014 -1.010 -1.603 -1.614 -1.612

(0.629) (0.632) (0.629) (0.799) (0.796) (0.799)
[0.110] [0.109] [0.109] [0.045] [0.043] [0.044]

At least 1 violent event (in utero) 1.702 1.715
(1.107) (1.128)
[0.125] [0.129]

Fatalities (in utero) 1.591 1.616
(0.848) (0.840)
[0.061] [0.055]

Mean (dep.var.) 27.657 27.657 27.657 27.657 27.657 27.657

Identifying observations 1,257,991 1,257,991 1,257,991 1,257,984 1,257,984 1,257,984
Singleton observations 82 82 0 89 89 0
Communities 31,284 31,284 31,284 31,284 31,284 31,284
Countries 36 36 36 36 36 36
Birth year range (min) 1984 1984 1984 1984 1984 1984
Birth year range (max) 2018 2018 2018 2018 2018 2018

Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH (multiplied by a factor of 100)
in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas
(see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All
specifications include community FEs, birth year by birth month FEs, country by birth year FEs, and control variables (see Section
2). Controls for local seasonality are either country by birth month FEs or 5°×5° cell by birth month FEs. Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures.

B.3 Fish dependency

Figure B6 presents descriptive statistics for fish dependency, defined as the share of to-

tal proteins of animal origin coming from fish. Figure B7 presents the estimates of the

heterogeneous effect of resource wealth on neonatal mortality distinguishing by a coun-

try’s fish dependency in Panel A, and by the trade balance for fish products from the

FAOSTAT database (FAO, 2019) in Panel B. As a separate measure of fish dependency,

we focus on proximity to coral reefs, a proxy for dependency on artisanal fishing. Fig-

ure B8 shows marginal effects of resource wealth on neonatal mortality as a function of

distance from the closest coral reef as obtained from UNEP-WCMC (2018). Distance is
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computed as a straight line between the community and the closest coral reef, subtract-

ing the distance from the ocean’s shore. Panel A shows the marginal effects assuming

a zero distance from the ocean’s shore, while Panel B assumes a distance of 40km.

Figure B6: Fish dependency amd trade balance for fish products
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population. In Panel B, vertical lines indicate the world’s average (solid) and the average among the selected countries (dashed).

Figure B7: Fish dependency and heterogeneous effect of resource wealth on NMR
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Note. Heterogeneous effect by dependency on fish proteins as a % of total animal proteins, and by trade balance for fish products.
Marginal effects are estimated using equation (1) restricting the sample to the corresponding group. Dependency as a % of total
animal proteins is high if the country is in the top tercile of the sample distribution of the 1960–2013 average fish dependency.
Dependency by trade balance is high if the country is in the top tercile of the sample distribution of the 1976–2017 average trade
balance for fish products. The sample is restricted to the coastal area (see Section 1). Standard errors are clustered at the ocean
raster data point. Confidence intervals at 90% level. All specifications include community FEs, birth year by birth month FEs,
5°×5° grid cell by birth year FEs, 5°×5° grid cell by birth month FEs, and control variables (see Section 2). Appendix A.1
provides detailed information on variables, selected surveys, and weighting procedures.
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Figure B8: Resource wealth and neonatal mortality, by distance to coral reefs
A. At the shore B. At 40km from the shore
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Note. Marginal effect of resource wealth on NMR as a function of shortest distance from a coral reef and assuming 0 distance from
the ocean’s shore (Panel A), or a distance of 40 km (Panel B). The dependent variable is a dummy variable equal to 1 if the child
died within the first month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH (multiplied
by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. Estimates are based on
equation (1) introducing interactions between the shock and a cubic polynomial in distance. The specification includes community
FEs, birth month by birth year FEs, country by birth year FEs, country by birth month FEs, and control variables (see Section 2).
The sample is restricted to the coastal area (see Section 1). Standard errors are clustered at the ocean raster data point. The 90%
confidence interval is indicated by dotted lines, beyond which the intervals are progressively shaded up to the 99% level. Within
confidence bounds, darker colors indicate a larger number of observations (see Appendix A.3). Appendix A.1 provides detailed
information on variables, selected surveys, and weighting procedures.

B.4 Issues related to identification

Figure B9 presents the between and within decomposition of the overall variation of the

ocean’s pH while in utero (Panel A) and NMR (Panel B) in the sample. The identifying

assumptions of the within-sibling specification can lead to non-random sample selec-

tion (Miller et al., 2021). Table B5 shows the observable differences between mothers

with a single child (excluded in the within-sibling specification) and mothers with mul-

tiple children. To verify the validity of our estimates of the effect of resource wealth on

neonatal mortality to the inclusion of mother-specific FEs, columns (1)–(3) in Table B6

estimate the benchmark specification restricting the sample to the identifying observa-

tions of the within-sibling specification. Columns (4)–(6) provide estimates of the effect

using the identifying sample of the within-sibling specification and re-weighting as in

Miller et al. (2021) to recover the overall effect on the population of interest (mothers

with at least one birth). The re-weighting procedure is based on observable character-

istics. To estimate the probability to be in the identifying sample of the within-sibling

specification, we use a probit model and include mother and weather characteristics.
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Figure B9: Between and within variation decomposition
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Note. Decomposition of the sample standard deviation of the ocean’s pH experienced in utero (Panel A), and of NMR (Panel
B). The sample is restricted to the coastal area (see Section 1). Geographical and time variables for which the decomposition is
computed are reported at the bottom of each figure. Appendix A.1 provides further information on the variables and the list of
surveys included in the study.

Table B5: Comparison of mothers with a single child versus multiple children
One child Multiple children

Mean Std. dev. Mean Std. dev. Observations
(1) (2) (3) (4) (5)

A. Children
Child is alive 0.97 0.16 0.92 0.27 1587285
Child is female 0.47 0.50 0.49 0.50 1587285
Birth order 1.00 0.00 2.68 1.82 1587285
Number of twins born with the child 0.00 0.00 0.04 0.24 1587285
Years since birth 6.04 6.55 12.86 7.73 1587285
Mother’s age at birth 22.51 4.71 24.61 5.82 1587285

B. Adult women
Age at first delivery 22.51 4.71 20.37 3.94 495310
Current age 28.54 7.99 36.19 7.66 495310
Years of schooling 8.39 4.62 5.99 4.82 441192
Primary education or less 0.31 0.46 0.55 0.50 495286
Married 0.81 0.40 0.89 0.31 495309
Working 0.54 0.50 0.60 0.49 425306
Household head is female 0.23 0.42 0.19 0.39 495310
Household head’s age 45.04 15.18 44.62 11.97 494936
Household members 5.13 3.08 5.72 2.89 495310
Household wealth 3.82 1.25 3.58 1.32 434418
Living in urban area 0.57 0.49 0.49 0.50 495310
Distance from shore 31.14 30.00 32.47 30.23 495310
Distance from another water body 39.07 81.02 46.61 100.49 495310
Altitude 179.28 396.98 187.48 401.10 495310
Temperature (° C) 26.17 3.12 26.19 3.06 495310
Precipitations (mm) 1609.01 659.60 1549.09 683.53 495310
Intensity of extractive fishing 0.06 0.20 0.06 0.19 495310
Intensity of night-time fishing 0.09 0.19 0.09 0.20 495310

Note. Descriptive statistics by the number of children of the mother (reported in column’s header). Means are reported in columns
(1) and (3), standard deviations in columns (2) and (4). Column (5) presents the total number of observations. Years since birth is
measured at the time of the interview and is independent from the child being alive. Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures.
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Table B6: The effect on neonatal mortality: identification checks
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Check: Benchmark specification with Re-weighting procedure
within-sibling identifying sample
(1) (2) (3) (4) (5) (6)

Resource wealth -1.939 -1.950 -2.000 -2.740 -2.785 -2.883
(0.792) (0.790) (0.776) (0.996) (1.001) (0.990)
[0.015] [0.014] [0.010] [0.006] [0.006] [0.004]

Mean (dep.var.) 31.476 31.476 31.476 31.478 31.478 31.478

Identifying observations 1,474,941 1,474,941 1,474,941 1,474,349 1,474,349 1,474,349
Singleton observations 0 0 0 108,741 108,741 108,741
Communities 31,356 31,356 31,356 31,356 31,356 31,356
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018

Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes

Note. In columns (1)–(3), estimates are based on equation (1) using the benchmark specification and restricting the sample to the
identifying sample of the within-sibling specification. In columns (4)–(6), estimates are based on equation (1) using the within-
sibling specification and the re-weighting procedure of Miller et al. (2021). The dependent variable is a dummy variable equal to 1
if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH
(multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample
is restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values
are reported in brackets. All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, and
5°×5° cell by birth month FEs. The full list of controls is presented in Section 2. Appendix A.1 provides detailed information on
variables, selected surveys, and weighting procedures.

B.5 Falsification and placebo tests

Balance across mother characteristics. Table B7 presents estimates of equation (1)

without control variables where the dependent variable is replaced by demographic con-

trols. None of the estimates is statistically significant, supporting the exogeneity of the

shock with respect to observable characteristics.

Table B7: Placebo test: balance on observable characteristics
Dependent variable: Age at

first
delivery

Age at
delivery

Age at
inter-
view

Schooling Primary
educ. or

less

Married Working Wealth

(1) (2) (3) (4) (5) (6) (7) (8)

Resource wealth 0.009 0.002 0.002 0.014 0.000 -0.000 -0.001 0.002
(0.016) (0.021) (0.021) (0.016) (0.002) (0.001) (0.002) (0.003)
[0.558] [0.934] [0.935] [0.382] [0.981] [0.787] [0.654] [0.396]

Mean (dep.var.) 20.094 25.086 36.682 4.916 0.669 0.887 0.558 3.120

Identifying observations 1,583,706 1,583,706 1,583,706 1,583,065 1,583,630 1,583,705 1,454,950 1,339,312
Singleton observations 25 25 25 25 25 25 28 31
Communities 31,380 31,380 31,380 31,380 31,380 31,380 28,828 27,039
Countries 36 36 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1) without control variables. The dependent variable is a dummy variable equal to 1 if the child
died within the first month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH (multiplied
by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to
coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in
brackets. The full set of controls is reported in the bottom panel of the table, control variables are excluded. Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures.
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Measurement error in the distance from the ocean. To ensure respondents’ confiden-

tiality, GPS coordinates for all DHS surveys are randomly displaced within a maximum

of 2 km for urban neighborhoods, and 10 km for rural villages. We simulate a random

error in the measurement of the distance of ± 10 km, ± 30 km, and ± 50 km. We iter-

ate the simulation 1,000 times, each time generating a new distance from the ocean and

estimating (1) for households that were left within 100 km from the shoreline. Figure

B10 shows the distribution of the coefficients in all iterations.

Figure B10: The effect on neonatal mortality, by magnitude of measurement error
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Note. Distribution of the marginal effect of resource wealth on NMR, estimated using (1) and introducing measurement error in
the distance from the ocean. The procedure performs 1,000 iterations. The vertical line represents our benchmark point estimate
(column 3 in Table 2). The distribution fits are estimated non-parametrically using kernel density estimation and assuming an
Epanechnikov kernel function. Bandwidths are estimated by Silverman’s rule of thumb. The sample is restricted to the coastal
area (see Section 1). Appendix A.1 provides further information on the variables and the full list of surveys included in the study.

B.6 Supplementary results on inference

Table B8 shows estimates of equation (1) for NMR using different assumptions for the

clustering of standard errors (reported in column). In addition, focusing on Table 2, we

implement three different permutation-based inference tests. In the birth dates within

communities test, birth dates are randomly reassigned within each community. In the

birth dates within countries test, birth dates are randomly reassigned within each coun-

try, independently from the community and the survey. In the across communities test,

mothers (and their children) are randomly allocated to different communities, indepen-

dently from the country and the survey. Figure B11 shows the distribution of estimates

using 5,000 iterations in each test and the empirical p-values.
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Table B8: Robustness to assumptions about standard errors
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Level of clustering: None 1°x1° grid
cell

Matched
ocean cell

5°x5° grid
cell

Country x
survey year

Community

(1) (2) (3) (4) (5) (6)
Resource wealth -1.491 -1.491 -1.491 -1.491 -1.491 -1.491

(0.664) (0.625) (0.359) (0.667) (0.645) (0.610)
[0.025] [0.017] [0.000] [0.026] [0.023] [0.015]

Mean (dep.var.) 30.474 30.474 30.474 30.474 30.474 30.474

Identifying observations 1,581,815 1,581,815 1,581,815 1,581,815 1,581,815 1,581,815
Singleton observations 25 25 25 25 25 25
Communities 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. Resource wealth is the average pH (multiplied by a factor of 100)
in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to the coastal area
(Section 1). All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, country by birth
month FEs, and control variables (see Section 2). Standard errors are reported in parenthesis, p-values are reported in brackets.
Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Figure B11: The effect on neonatal mortality: permutation-based inference
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Benchmark specification Within-sibling specification

Coefficients in Empirical p-values
Table 2 A B C

Benchmark specification
Specification 1 -1.417 0.012 0.012 0.014
Specification 2 -1.419 0.012 0.012 0.016
Specification 3 -1.491 0.009 0.009 0.010
Specification 4 -2.117 0.006 0.006 0.005
Specification 5 -2.094 0.008 0.008 0.006
Specification 6 -2.083 0.008 0.008 0.005

Within-sibling specification
Specification 1 -2.065 0.007 0.007 0.005
Specification 2 -2.126 0.006 0.006 0.005
Specification 3 -2.232 0.005 0.005 0.005
Specification 4 -2.459 0.007 0.007 0.006
Specification 5 -2.502 0.009 0.009 0.007
Specification 6 -2.612 0.007 0.007 0.005
Note. Distributions of marginal effects of resource wealth on NMR when birth dates are randomly reassigned. Tests are described
in Appendix B.6, and are based on 5,000 iterations. In each iteration, resource wealth is the average pH (multiplied by a factor
of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. Each graph depicts the empirical
distribution of estimates using the specification in each of the columns in Table 2. In each iteration, marginal effects are estimated
using equation (1). The sample is restricted to the coastal area (see Section 1). Appendix A.1 provides detailed information on
variables, selected surveys, and weighting procedures.
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B.7 Recall bias and selective migration

Table B9 replicates Table 2 by restricting the sample to recent births (at most 10 years

prior to the interview). Estimates are robust to restricting the sample to more recent

births, such as within the time period considered for under-5 mortality. Table B10 shows

estimates of the effect of resource wealth on the probability that the mother migrated to

the community of the interview within the first five years following delivery.

Table B9: The effect on neonatal mortality: restricting the sample to recent births
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)
Resource wealth -2.552 -2.418 -2.460 -2.059 -2.055 -2.142

(1.316) (1.331) (1.307) (1.143) (1.149) (1.133)
[0.053] [0.070] [0.060] [0.072] [0.074] [0.059]

Mean (dep.var.) 26.914 26.914 26.917 26.914 26.914 26.918

Identifying observations 746,982 746,982 745,962 746,960 746,960 745,940
Singleton observations 142 142 142 164 164 164
Communities 31,183 31,183 31,183 31,182 31,182 31,182
Countries 36 36 36 36 36 36
Birth year range (min) 1980 1980 1980 1980 1980 1980
Birth year range (max) 2018 2018 2018 2018 2018 2018

Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1) restricting the sample to births within 10 years of the interview. The dependent variable
is a dummy variable equal to 1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000.
Resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9
months before birth. The sample is restricted to the coastal area (see Section 1). All specifications include community FEs, birth
year by birth month FEs, country by birth year FEs, and control variables (see Section 2). Controls for local seasonality are either
country by birth month FEs or 5°×5° cell by birth month FEs. Standard errors (in parenthesis) are clustered at the ocean raster data
point, p-values are reported in brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting
procedures.
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Table B10: Post-delivery selective migration
Dependent variable: Mother migrated to community 0-4 years after delivery of child

(1) (2) (3) (4) (5) (6)
Resource wealth -0.000 -0.000 -0.000 0.001 0.002 0.002

(0.002) (0.002) (0.002) (0.003) (0.003) (0.004)
[0.958] [0.908] [0.988] [0.840] [0.612] [0.627]

Mean (dep.var.) 0.112 0.112 0.112 0.112 0.112 0.112

Identifying observations 1,016,246 1,016,246 1,015,068 1,016,242 1,016,242 1,015,064
Singleton observations 15 15 15 19 19 19
Communities 21,884 21,884 21,884 21,884 21,884 21,884
Countries 28 28 28 28 28 28
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018

Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the mother of the child migrated
to the community of the interview in the first 5 years of life of the child, and 0 otherwise. Resource wealth is the average pH
(multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample
is restricted to the coastal area (see Section 1). All specifications include community FEs, birth year by birth month FEs, country
by birth year FEs, and control variables (see Section 2). Controls for local seasonality are either country by birth month FEs or
5°×5° cell by birth month FEs. Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported
in brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

B.8 Early-life mortality

Table B11 presents estimates of the effect of resource wealth on early-life mortality.

Table B11: The effect on early-life mortality rates (per 1,000 live births)
Dependent variables: Post-neonatal (PMR) Child (CMR) Infant (IMR) Under-5 (U5MR)

(1) (2) (3) (4) (5) (6) (7) (8)
Resource wealth 1.169 1.076 -0.104 -0.044 -0.275 -0.407 -0.370 -0.435

(0.479) (0.490) (0.320) (0.330) (0.707) (0.666) (0.821) (0.795)
[0.015] [0.028] [0.746] [0.895] [0.698] [0.542] [0.652] [0.585]

Mean (dep.var.) 27.927 27.919 26.950 26.932 57.550 57.543 82.949 82.925

Identifying observations 1,535,443 1,533,608 1,492,560 1,490,789 1,583,706 1,581,815 1,583,706 1,581,815
Singleton observations 25 25 26 26 25 25 25 25
Communities 31,378 31,378 31,377 31,377 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018 2018 2018
Controls - Yes - Yes - Yes - Yes

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Resource wealth is the average
pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample
is restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are
reported in brackets. All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, country
by birth month FEs. The full list of controls is presented in Section 2 and refer to weather and demographic covariates. Appendix
A.1 provides detailed information on variables, selected surveys, and weighting procedures.

B.9 Parental investments

Table B12 shows estimates of the effect of resource wealth on parental health invest-

ments and on health outcomes associated with poor contemporaneous nutrition. To
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provide further evidence about the nutritional channel, Figure shows instead the effect

of the resource shock on the probability of being underweight, distinguishing by the

age of the child at the time of the measurement. The dependent variable is an indicator

variable equal to 1 if the child has a weight-for-age z-score below negative 2 standard

deviations, and 0 otherwise. Finally, as an additional check about nutritional choices

at the time of the interview, Table B13 shows the effect of resource wealth on female

respondents’ consumption of animal proteins, distinguishing between fish and meat and

dairy. Data are available for a subset of surveys (see Appendix A.1).

Table B12: Parental investments and postnatal nutritional outcomes
ANTENATAL DELIVERY NUTRITION

Dependent variables: Number of
visits

w/ health
professional

In health
center

w/ health
professional

Morbidity Anemia

(1) (2) (3) (4) (5) (6)

Resource wealth -0.001 0.004 0.003 -0.003 -0.002 0.002
(0.009) (0.002) (0.002) (0.003) (0.004) (0.006)
[0.940] [0.025] [0.067] [0.221] [0.677] [0.741]

Mean (dep.var.) 1.643 0.442 0.355 0.638 0.391 0.558

Identifying observations 263,819 494,305 494,375 267,900 339,407 114,370
Singleton observations 1,099 131 131 1,032 871 1,437
Communities 29,943 31,304 31,304 30,031 29,932 15,844
Countries 36 36 36 36 36 27
Birth year range (min) 1985 1972 1972 1985 1985 1995
Birth year range (max) 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Morbidity is an indicator
variable equal to 1 if the child has experienced fever, cough or diarrhea in the weeks previous to the interview, and 0 otherwise.
Anemia is an indicator variable equal to 1 if the child has hemoglobin levels below 110 g/L, and 0 otherwise. Resource wealth is
the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth.
The sample is restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point,
p-values are reported in brackets. For cross-survey comparability, the samples are restricted to the last birth, independently from the
child being alive. All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, country by
birth month FEs, and control variables (see Section 2). Appendix A.1 provides detailed information on variables, selected surveys,
and weighting procedures.
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Figure B12: Effect on the probability of being underweight
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Note. Marginal effect of resource weath experienced in utero on the probability of the child to be underweight. The dependent
variable is an indicator variable equal to 1 if the child has a weight-for-age z-score below negative 2 standard deviations, and 0
otherwise. Confidence intervals at 90% level. Estimates are based on equation (1) including community FEs, birth month by birth
year FEs, country by birth year FEs, country by birth month FEs, and control variables (see Section 2). Standard errors are clustered
at the ocean raster data point. Appendix A.1 provides further information on the variables and for the list of surveys included in the
study.

Table B13: Protein consumption at the time of the interview
Dependent variable: Female respondent consumed [food] in the day previous to the interview

Sub-sample: All women Mothers with ≥ one child under 3 y.o.
(1) (2) (3) (4)

A. Fish

Resource wealth (time of interview) 0.016 0.003 0.013 0.004
(0.017) (0.017) (0.017) (0.018)
[0.333] [0.862] [0.448] [0.838]

Observations 49045 49043 36226 36223
Grid cells 239 239 239 239

B. Meat and dairy

Resource wealth (time of interview) 0.000 0.004 0.008 0.008
(0.015) (0.016) (0.013) (0.014)
[0.996] [0.817] [0.554] [0.551]

Observations 49037 49035 36212 36209
Grid cells 239 239 239 239
Seasonality Country Cell Country Cell

Note. Estimates based on equation (1). Resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest
to the female respondent’s community in the month of the interview. The sample is restricted to coastal areas (see Section 1) and
in columns (5)–(8) to households with at least a child under 3 years old (due to cross-survey comparability, Croft et al., 2018). All
specifications include location FEs using grid cells at the 1°×1° resolution, year by birth month FEs, and country by interview year
FEs, and control variables (see Section 2, weather controls are meaasured at the time of interview). Controls for local seasonality
are either country by interview month FEs or 5°×5° cell by interview month FEs. Standard errors (in parenthesis) are clustered at
the ocean raster data point, p-values are reported in brackets. Appendix A.1 provides detailed information on variables, selected
surveys, and weighting procedures.
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B.10 Heterogeneous effects

Figure B13 presents estimates of heterogeneous effects for children and mothers’ de-

mographics (Panel A) and for location characteristics (Panel B).

Figure B13: Heterogeneous effect of resource wealth on NMR
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Note. Heterogeneous effects of ocean’s pH while in utero on NMR by child and mother’s demographics (Panel A), and by location’s
characteristics (Panel B). Marginal effects are estimated using equation (1) restricting the sample to the corresponding group. For
mother’s age at birth, wealth index, agricultural land, population, fish as a % of animal proteins, and fishing hours, we create a
dummy variable indicating whether an observation is above or below the full sample’s median of the variable of interest. Agricul-
tural land and population are set at the 1970 level. Standard errors are clustered at the ocean raster data point. Confidence intervals
at 90% level. All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, country by birth
month FEs, and control variables (see Section 2). Appendix A.1 provides detailed information on variables, selected surveys, and
weighting procedures.

B.11 Fishing and fish prices

For night-time and extractive fishing, Figure B14 shows an example of the geograph-

ical variation. To test whether we observe heterogeneous effects by intensity of extrac-

tive and night-time fishing, we estimate equation (1) on the set of outcomes presented

in Figure 6 by adding interaction terms between the ocean’s pH while in utero and each

of these variables. We perform two tests assuming a linear or a quadratic functions, and

24



computing p-values for the joint tests of equality to 0 of the coefficients on the interac-

tion term(s). Table B.11 reports F-statistics and p-values for a joint-test of equality to

zero of the interaction terms. A rejection of the test indicates heterogeneous effects. We

highlight significant heterogeneous effects by extractive fishing on neonatal mortality,

economic well-being and long-run physical development. For fish prices, the Philip-

pine Statistics Authority (2020) provides monthly retail prices at the province-species

level. Figure B15 shows the evolution of prices and spatial distribution of the median

fish price for the period 1990 – 2018.

Table B14: Test of heterogeneous effects of resource wealth
Type of interaction Linear Linear+quadratic

F p-value F p-value
(1) (2) (3) (4)

Panel A. Short-run effects (all children)
NMR

Intensity of extractive fishing 32.111 0.000 16.769 0.000
Intensity of night-time fishing 0.165 0.685 0.260 0.771

Physical development
Intensity of extractive fishing 2.009 0.157 1.253 0.287
Intensity of night-time fishing 0.447 0.504 1.403 0.248

Panel B. Long-run effects (female)
Economic well-being

Intensity of extractive fishing 16.334 0.000 8.204 0.000
Intensity of night-time fishing 0.042 0.838 0.086 0.917

Physical development
Intensity of extractive fishing 13.497 0.000 10.608 0.000
Intensity of night-time fishing 1.032 0.311 1.623 0.199

Note. The table reports F-statistics and p-values for joint tests of equality to zero of the estimates on the interaction term(s).
Estimates are based on equation (1) adding interaction terms between the ocean’s pH while in utero and the variables presented in
the left column. The sample is restricted to coastal areas (see Section 1). Standard errors are clustered at the ocean raster data point.
All specifications include cluster fixed effects, birth year by birth month fixed effects, country by birth year fixed effects (local
trend), country by birth month fixed effects (local seasonality), and time-varying controls (climatic/weather and demographic).
The full list of controls is presented in Section 1. Observations are re-weighted to correct for oversampling of countries surveyed
multiple times (see Appendix A.1). The ocean’s pH (in utero) is the average value in the cell closest to the child’s cluster during
the 9 months before birth, and is multiplied by a factor of 100. Appendix A.1 provides further information on the variables and the
list of surveys included in the study. We exclude DHS surveys for Peru as information for the intensity of night-time fishing is not
available (see Appendix A.1).
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Figure B14: Geographical distribution of fishing: an example
A. Night-time fishing B. Extractive fishing

Note. Example of the geographical distribution of the intensity of night-time fishing (Panel A), and extractive fishing (Panel B).
The resolution is 0.1°×0.1° in Panel A, and 0.25°×0.25° in Panel B. Color scales are based on quantiles. Appendix A.1 provides
further details about the variables.

Figure B15: Time series and spatial distribution of retail price for fish
A. Time series B. Spatial distribution of the median price
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Note. Evolution over time of the province-level fish prices (Panel A) and spatial distribution of the 1990 – 2018 median fish price
(Panel B). Prices are obtained for the following species: indian mackerel, milkfish, threadfin bream, blue crab, caesio, anchovies,
frigate tuna, tilapia, tiger prawn, slipmouth, and roundscad. Prices in Philippine Peso per kg are converted in constant US$ (base
2010) using exchange rates and CPI from the IMF (2020). In Panel A, each price is the (unweighted) average of all available
prices. Missing data are imputed using linear interpolation for each province and species.
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C Aggregate effects of ocean acidification
Counterfactual estimates. We predict birth-level NMR (N̂MRikmtvc) using equation

(1) allowing for a flexible form in the distance from shore. The counterfactual predic-

tion (N̂MR
1975

ikmtvc) is obtained by imposing in utero exposure to the ocean’s chemical

composition at the 1975 level (allowing for seasonal variation) keeping other variables

constant. NMR attributed to acidification (∆ikmtvc) is computed as the community-level

average of N̂MRikmtvc − N̂MR
1975

ikmtvc. Figure C1 presents summary statistics.

Figure C1: Counterfactual estimates of NMR attributed to acidification
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Note. Panel A presetns the country-level average NMR in the coastal area (left bar) and average NMR attributed to acidification
(right bar). Panel B shows the relationship between NMR attributed to acidification and distance from shore is estimated using a
local polynomial regression. Panel C shows the distributions are estimated using a kernel density estimator. Estimators in Panels
B–C assume an Epanechnikov function and a width of the smoothing window around each point determined using a rule-of-thumb.

Acidification shocks and adaptation. To test for adaptation, Table C1 re-estimates

Table 2 interacting the ocean’s ph while in utero with a location’s initial conditions,
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namely the (standardized) average ocean’s pH from 1972–1975.

Table C1: The effect on neonatal mortality: initial conditions
Dependent variable: NMR (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)

Resource wealth -1.970 -2.017 -2.195 -2.273 -2.302 -2.329
(0.717) (0.697) (0.685) (0.783) (0.785) (0.771)
[0.006] [0.004] [0.001] [0.004] [0.004] [0.003]

× initial conditions 1.110 1.106 1.303 1.119 1.095 1.299
(0.322) (0.325) (0.319) (0.329) (0.329) (0.315)
[0.001] [0.001] [0.000] [0.001] [0.001] [0.000]

Mean (dep.var.) 30.473 30.473 30.474 30.474 30.474 30.475

Identifying observations 1,583,706 1,583,706 1,581,815 1,583,703 1,583,703 1,581,812
Singleton observations 25 25 25 28 28 28
Communities 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018
Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. Resource shock is the average pH (multiplied by a factor of 100) in the
ocean’s cell closest to the child’s community during the 9 months before birth. Initial conditions refer to a location’s (standardized)
average between 1972–1975. The sample is restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered
at the ocean raster data point, p-values are reported in brackets. All specifications include community FEs, birth year by birth month
FEs, country by birth year FEs. Controls for local seasonality are either country by birth month FEs or 5°×5° cell by birth month
FEs. The full list of controls is presented in Section 2. Appendix A.1 provides detailed information on variables, selected surveys,
and weighting procedures.
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